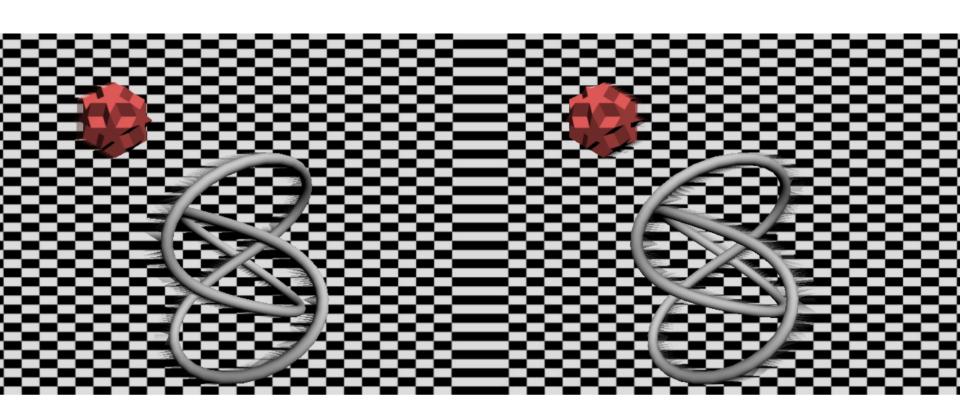


Некоторые методы повышения качества построения стерео

Юрий Бердников

CS MSU Graphics & Media Lab Video group


Содержание

- Введение
- Оценка стабильности во времени
- Алгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение

Стандартный методВрага нужно знать в лицо

Алгоритмы заполнения Требования

- Отсутствие заметных статических искажений (Spatial consistency)
- Стабильность во времени (Temporal consistency)

Приемлемое время работы

Содержание

- Введение
- Оценка стабильности во времени
- Aлгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение

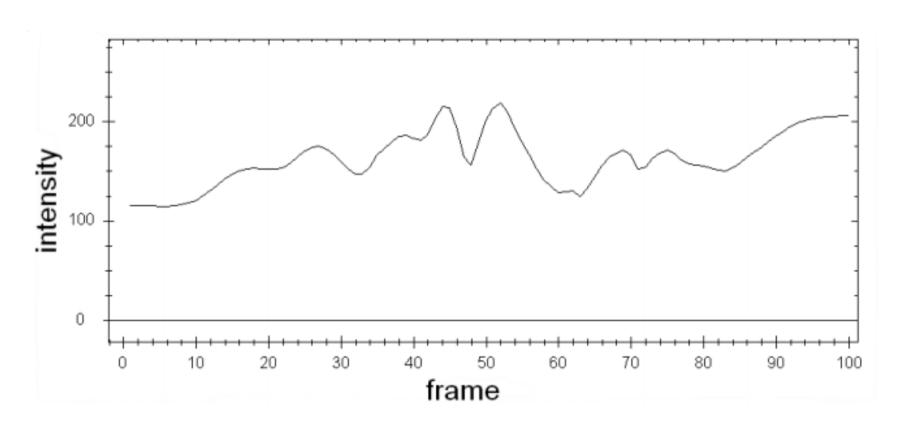
Стабильность во времени

• Неформальное определение:

«область мерцает сильнее, чем надо»

- Возникающие вопросы:
 - Что есть «сильнее, чем надо» ?
 - Что есть «область» в контексте видео ?

МерцаниеИзмерение мерцания



- Модельный случай:
 - Объект неподвижен
 - Фон движется
 - Область заполнения неподвижна
- Рассмотрим яркость пикселя во времени

График яркости пикселя Ground Truth

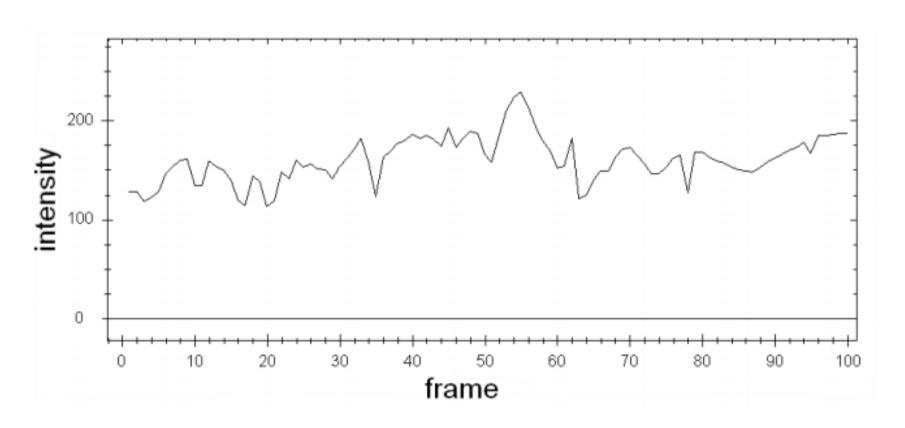


График яркости пикселя

Результат алгоритма заполнения

Измерение мерцания

Формализация подхода

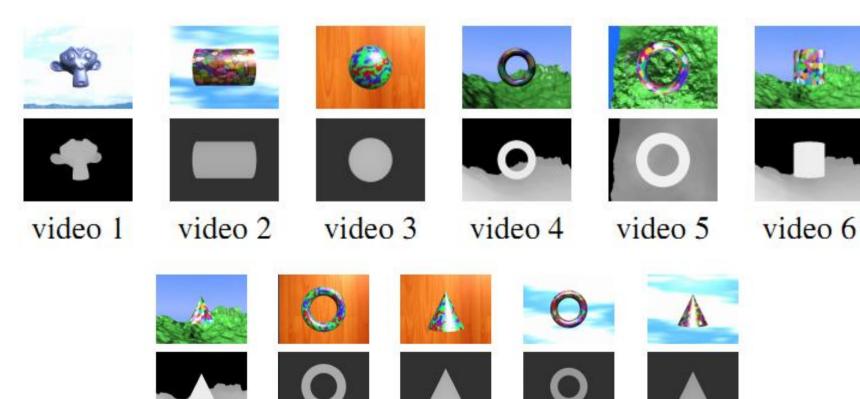
Степень мерцания пикселя

$$\kappa_p = \frac{1}{|T_p|} \sum_t |I_t(p) - I_{t-1}(p)|$$

• Степень мерцания области

$$\kappa_D(I) = \frac{1}{|D|} \sum_{T_p \in D} \kappa_p$$

Оценка увеличения мерцания области


$$FDF(I) = \kappa_D(I) - \kappa_D(G)$$

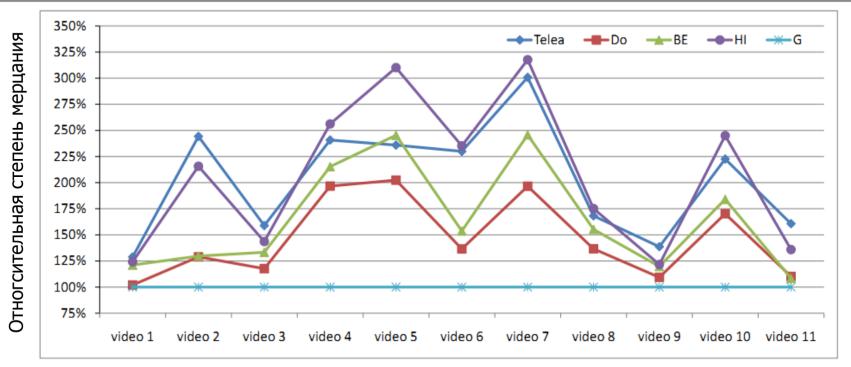
Тестовые данные

video 8

video 9

video 10

video 11


video 7

Результаты сравнения алгоритмов заполнения

	video 1	video 2	video 3	video 4	video 5	video 6	video 7	video 8	video 9	video 10	video 11
Telea	0,352	3,396	5,216	2,313	5,143	8,019	6,04	6,021	3,419	2,776	1,427
Do	0,024	0,681	1,559	1,587	3,875	2,252	2,904	3,235	0,823	1,589	0,24
BE	0,258	0,698	2,947	1,894	5,499	3,314	4,385	4,886	1,745	1,903	0,196
HI	0,296	2,724	3,867	2,565	7,951	8,346	6,547	6,642	1,908	3,282	0,844

Содержание

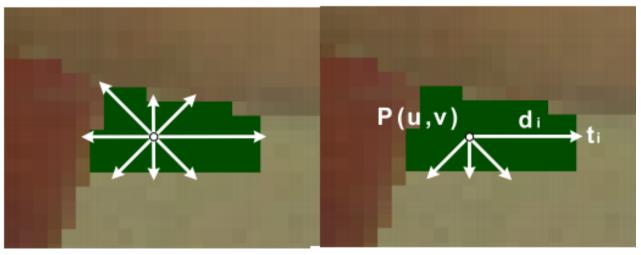

- Введение
- Оценка стабильности во времени
- Алгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение

Схема алгоритма (1)

- Расширение областей открытия в сторону фона (подавление остатков motion blur)
- Взвешенное суммирование соседних пикселей

find nearest edge pixel

disregard foreground pixels

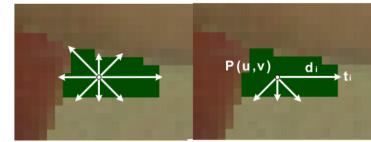


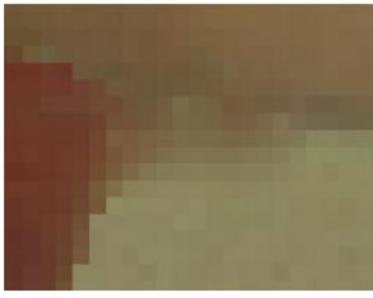
Схема алгоритма (2)

В математическом виде:

$$\forall u, v \in O, \quad P(u, v) = \frac{\sum_{i=1}^{N} d_i^{-2} * f_i}{\sum_{i=1}^{N} d_i^{-2}},$$
 with
$$f_i(t_i) = \begin{cases} 0, & \text{if foreground} \\ t_i, & \text{if background}. \end{cases}$$

disregard foreground pixels

Да, формула содержит ошибки



Результат работы

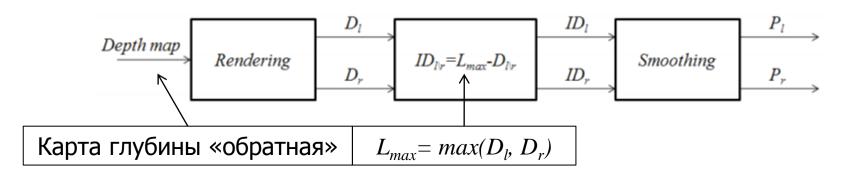
result of inpainting with depth information

result of inpainting without depth information

- Преимущества
 - Малая вычислительная сложность
 - Выглядит потенциально лучше Stretch
- Недостатки
 - Никак не учитывает соседние кадры
 - Сглаживает изображения вдали от границ области открытия

Содержание

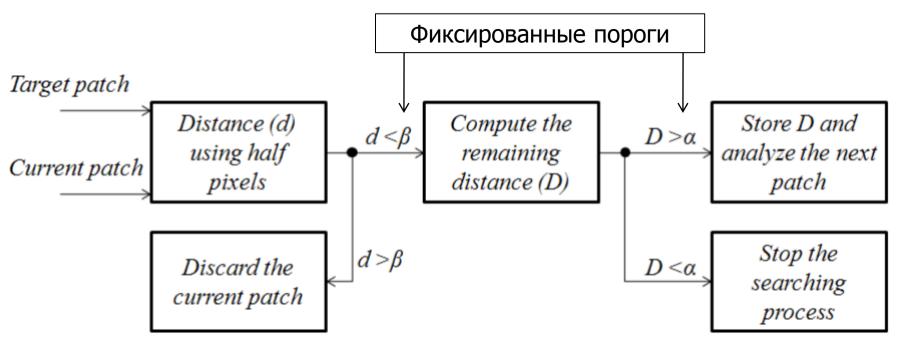
- Введение
- Оценка стабильности во времени
- Алгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение


Схема алгоритма

- Основа Exemplar-Based Inpainting
 см. доклад Ю. Гитмана
 «Обзор методов инпэинтинга по одному изображению»
- Краткая схема Exemplar-Based Inpainting:
 - Вычисление карты приоритетов
 - Поиск похожих элементов текстуры (патчей)
 - Заполнение неизвестных областей

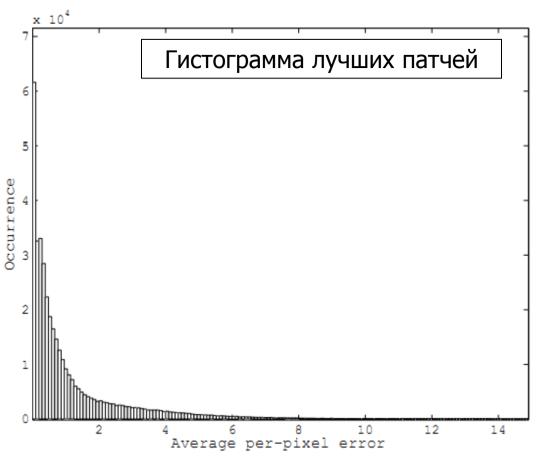
Модификация алгоритма (1)

 Учёт принадлежности к фону при вычислении карты приоритетов


 Использование только яркости при поиске патчей

Модификация алгоритма (2)

Ускорение поиска патчей



- 5 видео
- Размеры окна 3х3, 5х5, 7х7
- $\alpha = 1, \beta = 5$

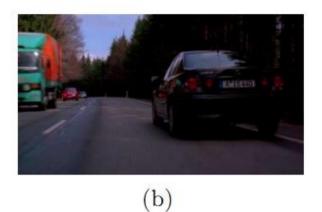
Lucio Azzari, Federica Battisti, "A Modified Non-local Mean Inpainting Technique for Occlusion Filling in Depth-Image Based Rendering", SPIE, 2011

Модификация алгоритма (3)

- Учёт соседних кадров
- Ограничение области поиска
- Использование нескольких лучших патчей:

Количество используемых патчей. Чем больше k, тем больше β . В экспериментах k=5, β =7

$$\psi_{t'} = rac{\sum\limits_{i=1}^k w(\psi_i)\psi_i}{\sum\limits_{i=1}^k w(\psi_i)}$$
 — i -й патч


$$w(\psi_i) = e^{-\frac{d(\psi_t, \psi_i)}{h}}$$

Тестовые данные

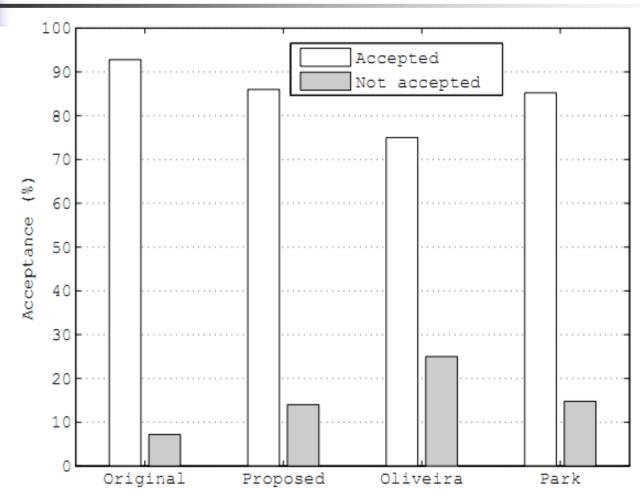
(a)

,

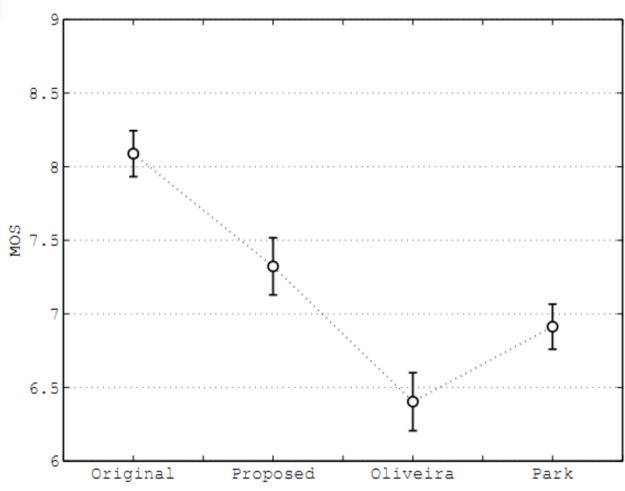
Объективное тестирование

Algorithm	PSNR	$PSNR_{HVS_M}$	WPSNR	NTIA-VQM	NRMos
Proposed	27.78	25.52	36.26	0.31	4.90
Oliveira based	26.78	24.14	34.74	0.38	4.84
Park based	27.56	25.15	35.99	0.31	4.85
Raw	23.47	20.88	31.58	0.53	4.42

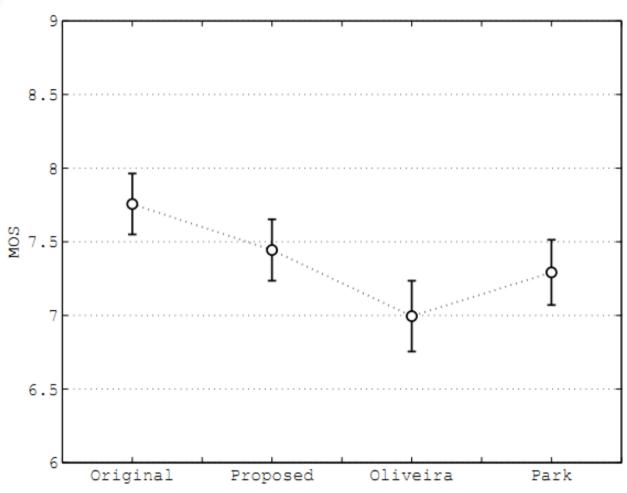
Table 1. Average objective results computed by using state of the art metrics.


Субъективное тестирование

- 3" автостереоскопический дисплей
- 33 эксперта, от 22 до 40 лет
- 5 тестов:
 - Preliminary vision test
 - Training test
 - Acceptance test
 - Overall quality
 - Perceived depth


Acceptance test

Quality test



Lucio Azzari, Federica Battisti, "A Modified Non-local Mean Inpainting Technique for Occlusion Filling in Depth-Image Based Rendering", SPIE, 2011

Depth test

Lucio Azzari, Federica Battisti, "A Modified Non-local Mean Inpainting Technique for Occlusion Filling in Depth-Image Based Rendering", SPIE, 2011

- Преимущества
 - Использует соседние кадры
 - Не нарушает текстуру фона
- Недостатки
 - Вычислительная сложность
 - Стабильность во времени не гарантируется

Содержание

- Введение
- Оценка стабильности во времени
- Алгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение

Схема алгоритма (1)

Кросс-билатеральная предобработка карты глубины

Bec
$$\rightarrow B(u+\delta u,v+\delta v)=f_s(\delta u,\delta v)\cdot f_I(I(u,v),I(u+\delta u,v+\delta v))$$

Учёт расстояния
$$f_s(\delta u, \delta v) \equiv \exp\left(-\frac{1}{\sigma_s}\sqrt{\|\delta u\|^2 + \|\delta v\|^2}\right)$$

Учёт цвета
$$\rightarrow f_I\left(I(u,v),I(u+\delta u,v+\delta v)\right)$$

$$\equiv \exp\left(-\frac{1}{\sigma_I}\sqrt{\sum_{c\in\{R,G,B\}}\left\|I_c\left(u+\delta u,v+\delta v\right)-I_c\left(u,v\right)\right\|^2}\right)$$

Предобработка глубины

Глубина

Изображение до и после заполнения одиночных пикселей

До

После

Схема алгоритма (2)

- Заполнение пикселей с помощью поиска наилучших патчей
- Порядок заполнения определяется $(\|\bar{g}_{\perp}\|^2 + \|\bar{g}_{\parallel}\|^2)^{\frac{N}{2}}$

$$\bar{\mathbf{g}}_{\perp} \equiv \sum_{(\delta u, \delta v) \in \mathcal{B}} \rho\left(\delta u, \delta v\right) \bar{\mathbf{o}}_{\perp}\left(\delta u, \delta v\right) \bar{\mathbf{g}}_{\perp}\left(\delta u, \delta v\right)$$
 Локальные градиенты по осям
$$\bar{\mathbf{g}}_{\parallel} \equiv \sum_{(\delta u, \delta v) \in \mathcal{B}} \rho\left(\delta u, \delta v\right) \bar{\mathbf{o}}_{\parallel}\left(\delta u, \delta v\right) \bar{\mathbf{g}}_{\parallel}\left(\delta u, \delta v\right)$$

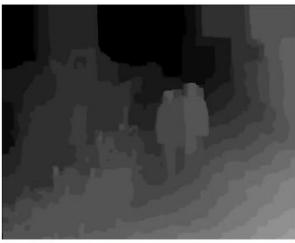
$$\bar{\boldsymbol{\omega}}\left(\delta u, \delta v\right) \equiv \frac{\left(\delta u, \delta v\right)}{\sqrt{\left\|\delta u\right\|^{2} + \left\|\delta v\right\|^{2}}}$$

Схема алгоритма (3)

Трилатеральная фильтрация

$$T(u+\delta u,v+\delta v) = f_s(\delta u,\delta v) \cdot f_I(I(u,v),I(u+\delta u,v+\delta v)) \cdot f_d(d(u,v),d(u+\delta u,v+\delta v))$$
$$f_d(d(u,v),d(u+\delta u,v+\delta v)) = \exp\left(-\frac{1}{\sigma_d} \left\| d(u+\delta u,v+\delta v) - d(u,v) \right\| \right)$$

$$\sigma_{\rm s}$$
 = 1.0, $\sigma_{\rm c}$ = 0.25, $\sigma_{\rm d}$ = 0.15



Результаты работы

Результаты работы

Исходные данные

DIBR interpolation

Image inpainting

Proposed method

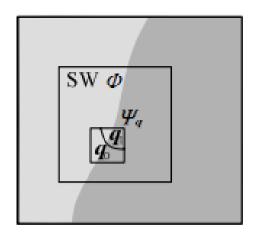
- Преимущества
 - Малая вычислительная сложность
 - Выглядит потенциально лучше Stretch
- Недостатки
 - Никак не учитывает соседние кадры
 - Сглаживает изображения вдали от границ области открытия

Содержание

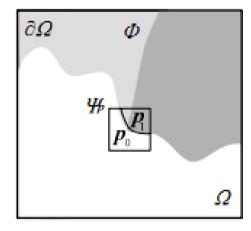
- Введение
- Оценка стабильности во времени
- Алгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение

Схема алгоритма

- Морфология карты глубины
- Доработка оценки приоритетов


$$P(p)=C(p)D(p) \longrightarrow P(p)=C(p)+D(p)$$

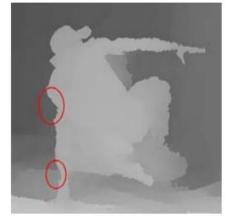
• Дополнительное слагаемое в оценке патчей


$$\begin{split} d(\Psi_p, \Psi_q) &= \mathrm{SAD}(\Psi_p, \Psi_q) + \\ \lambda \left| \mathrm{average} \left(\sum \mathrm{depth}(\textbf{\textit{p}}_1) \right) - \mathrm{arerage} \left(\sum \mathrm{depth}(\textbf{\textit{q}}_0) \right) \right| \end{split}$$

Модификация оценки патчей

Исходный кадр

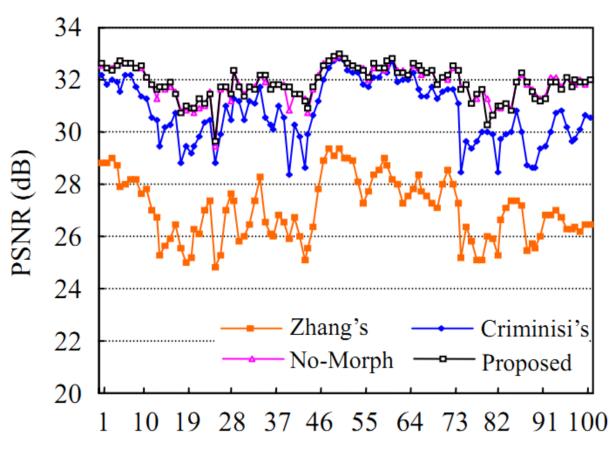
Сдвинутый кадр


$$\lambda = \begin{cases} \lambda_{b}, \text{ average} \left(\sum \text{depth}(\mathbf{p}_{1}) \right) \leq \text{average} \left(\sum \text{depth}(\mathbf{q}_{0}) \right), \\ \lambda_{f}, \text{ average} \left(\sum \text{depth}(\mathbf{p}_{1}) \right) > \text{average} \left(\sum \text{depth}(\mathbf{q}_{0}) \right). \end{cases}$$

Пример работы

Исходные данные

Исходный и модифицированный алгоритмы



Kai LUO, Dong-xiao LI, "Depth-aided inpainting for disocclusion restoration of multi-view images using depth-image-based rendering", Journal of Zhejiang University, 2009

Сравнение с конкурентами

Frame index

- Преимущества
 - Малая вычислительная сложность
 - Выглядит потенциально лучше Stretch
- Недостатки
 - Никак не учитывает соседние кадры
 - Сглаживает изображения вдали от границ области открытия

Содержание

- Введение
- Оценка стабильности во времени
- Алгоритм Do и Zinger
- Финско-итальянский вариант Exemplar-Based
- Тайваньский вариант Exemplar-Based
- Китайский вариант Exemplar-Based
- Заключение

Заключение

- Всё хуже, чем хотелось бы
- Если объект неподвижен, восстановление из движения не работает
- Если объект движется, простые методы вызывают артефакты
- Предполагаемый лучший вариант заполнение из движения с 1-2 соседних кадров, оставшееся заполняется простыми методами

Литература

- Michael Schmeing and Xiaoyi Jiang, "Time-consistency of Disocclusion Filling Algorithms in Depth Image Based Rendering," in proc. 3DTV Conference, 2011, pp. 1–4
- Luat Do and Svitlana Zinger and Peter H. N. de With, "Quality improving techniques for free-viewpoint DIBR," in proc. 3DTV Conference, 2009, pp. 1–4
- Lucio Azzari, Federica Battisti, Atanas Gotchev, Marco Carli and Karen Egiazarian, "A modified non-local mean inpainting technique for occlusion filling in depth-image-based rendering," in proc. SPIE, 2011
- 4. C. Cheng, S. Lin, S. Lai, and J. Yang, "Improved novel view synthesis from depth image with large baseline", in Proc. ICPR, 2008, pp.1-4.
- Kai LUO, Dong-xiao LI, Ya-mei FENG, Ming ZHANG, "Depth-aided inpainting for disocclusion restoration of multi-view images using depthimage-based rendering", Journal of Zhejiang University, 2009 Vol.10 No.12 P.1738~1749.

Лаборатория компьютерной рафики и мультимедиа

GRAPHICS & MEDIA LAB VIDEO GROUP

Видеогруппа — это:

- Выпускники в аспирантурах Англии,
 Франции, Швейцарии (в России в МГУ и ИПМ им. Келдыша)
- Выпускниками защищены 5 диссертаций
- Наиболее популярные в мире сравнения видеокодеков
- Более 3 миллионов скачанных фильтров обработки видео