
Compression� Information Theory and Grammars�

A Uni�ed Approach

Abraham Bookstein and Shmuel T� Klein

Center for Information and Language Studies

University of Chicago� ���� East ���th Street�
Chicago� Illinois �����

January �		�

Abstract�

Text compression is of considerable theoretical and practical interest� It is� for example� becoming
increasingly important for satisfying the requirements of �tting a large database onto a single CD�
ROM� Many of the compression techniques discussed in the literature are model based� We here
propose the notion of a formal grammar as a �exible model of text generation that encompasses most
of the models o�ered before as well as� in principle� extending the possibility of compression to a
much more general class of languages� Assuming a general model of text generation� a derivation
is given of the well known Shannon entropy formula� making possible a theory of information based
upon text representation rather than on communication� The ideas are shown to apply to a number
of commonly used text models� Finally� we focus on a Markov model of text generation� suggest
an information theoretic measure of similarity between two probability distributions� and develop a
clustering algorithm based on this measure� This algorithm allows us to cluster Markov states� and
thereby base our compression algorithm on a smaller number of probability distributions than would
otherwise have been required� A number of theoretical consequences of this approach to compression
are explored� and a detailed example is given�

�� Introduction

Compression is of interest for two reasons
 Most immediately� it is of great practical

importance� both for the storage and transmission of information� This is likely to con�

tinue to be the case for some time into the future� While the signi�cance of compression

for data transmission is generally accepted� it is often noted that storage devices are

becoming less expensive� and that this limits the need for data compression to save on

storage requirements� Less often noted� however� is that our ambition to store infor�

mation is similarly growing quickly� Being able to store a large database on a single

CD�ROM rather than two has signi�cant implications for its cost and convenience of

� � �



use ���� For overviews of compression techniques and theory see ��� or ����

The possibility of compressing text also has important theoretical implications�

Much of the theory of data compression relies heavily on Shannon�s theory of informa�

tion ��� ���� a body of mathematics intended for analyzing the encoding and transmis�

sion of messages across a possibly noisy channel� In his formulation� Shannon o�ered

a set of axioms describing the properties desired of a measure of uncertainty within a

communications context� and deduced from these axioms a function� H� that he called

Entropy
 if we have a set of messages M � fmig� and each mi has an associated

probability� Pi� then H is de�ned by the well known formula

H � �
X

Pi logPi�

H quanti�es the uncertainty regarding which message will be selected for transmission�

the reduction in uncertainty then de�nes the information content of a transmission�

Of particular importance for us� it is subsequently shown that H constitutes a lower

bound on our ability to compress data �see� e�g�� �� for a very readable derivation of

this result�
 given a set of items and probabilities� fmi� Pig� it is not possible to usefully

encode the items fmig with a binary code so that the lengths of the codewords� li�

satisfy
P
Pili � H� H thus de�nes a theoretical limit in the compressibility of a set of

messages� given a probability model describing message generation�

We believe that the full conceptual implications of this result have been largely

overlooked� The possibility of compressing data provides a basis for a completely new

derivation of the entropy formula
 given a probabilistic message generator� the uncer�

tainty of �or information contained in� its message set can be de�ned as the smallest

amount of storage� on the average� needed to store the encoded output of the machine�

We will show that the Shannon measure follows directly from this de�nition� Thus en�

tropy is directly related to compression� rather than primarily a communication�based

concept with incidental implications for compression�

A number of authors have commented on the importance of correct source modeling

for good compression ���� ���� A mechanism for representing source models that

we �nd appealing because of its simplicity and �exibility is that of a grammar� ����

especially for describing text generation� In Section �� we introduce the notion of a

grammar more formally� and show how it can be used to derive Shannon�s entropy

formula
 H then measures the �information content� of the messages generated by

the grammar� Several special cases� including the most popular ones appearing in the

literature� are then described from this vantage point�

� � �



It is not realistic� however� to contemplate using a grammar de�ning a natural

language as the basis for a practical compression procedure� We therefore present in

Sections � and � a compression method based on a model we believe is a good trade�o�

between a simple� but not very accurate� model like independent character generation�

and a much more sophisticated model like a general grammar� which is impossible to

implement� In Section �� we assume that natural text is generated by a �rst�order

Markov process with anomalies
 certain strings� relatively few in number� occur at

rates substantially greater than expected on the basis of the Markov assumption� We

�rst identify these strings and replace each of them by a single new symbol added to

our alphabet� The new alphabet is then encoded as a �rst�order Markov process� for

e�ciency� the number of states is reduced by a clustering mechanism� as described

in detail in Section �� The clustering is based upon a similarity measure inspired by

information theoretic arguments� A detailed example of the clustering algorithm is

presented in Section ��

�� Grammars

Our discussion of compression is guided by the notion of a grammar� A grammar is

a systematic description of how a language is created� It permits us to de�ne a set with

an in�nite number of items �the sentences of the language� in a �nite number of bytes

�the grammar�� Knowledge of the grammar supplies a great deal of information about

the sentences� and thus reduces the information contained in the sentences themselves�

This can be made more precise
 we are considering a machine that generates text�

where the output of the machine is describable as a tuple �VN � VT �P� S�
 VN is a set

of variables� VT a set of terminal symbols� P a set of productions and S � VN a start

symbol ���� We adopt this customary de�nition� except that we also associate a prob�

ability with each production rule� One consequence of the introduction of probabilities

into grammars is that it allows us in principle to assign a probability to each message�

These message probabilities are the basis of all the compression methods and theory

discussed below�

We now show that it is possible� given the message probabilities� to derive the

Shannon entropy formula on the basis of compression considerations alone� To do this

in the fullest generality� we must �rst decide what it is that our source is generating�

Beginning with the notion of a grammar suggests that the fundamental conceptual unit

be the whole message� not the individual characters� We may well compress a message

by a sequence of character oriented steps� But ultimately the message is conceived of

� � �



as a unit� and after compression we have a bit string representing the full message��

We begin� then� with the notion of a probabilistic message source� and consider the

set of all possible messages fMig that can be generated by this source� associated with

each message Mi is the probability� Pi� that Mi will be generated� Though the com�

putation may be complex� it is in principle possible to derive these probabilities given

a grammar for the source� If a limit is imposed on the size of a message� the message

set can be considered �nite� Also associated with Mi is its compressed representation�

a bit string of length �i� We further assume that none of the bit strings is a pre�x

of any other�this may require adjoining a unique �end of message� character at the

end of every message� as is usually done for arithmetic coding ���� ���� The average

compressed message length is
P
Pi�i� The entropy HG of the source� described by the

grammar G� can now be de�ned as the minimum value this length can take over all

possible compression procedures� We can further de�ne the entropy per character as

HG��n� for �n the expected length in characters of the message set� provided the latter

is de�ned� We speculate that the value HG��n will be smaller than the corresponding

values computed from distributions assuming independent character occurrence� That

is� our knowledge of the source permits us to compute the true probability� Pi� of Mi

occurring� and hence HG and HG��n� But� given a set of textual messages� we can

statistically analyze the occurrences of characters to estimate the global probability of

occurrence of each character� denote the probability of occurrence of the i�th character

by pi� Then the entropy per character under the independence model� HI � is given by

HI � �
P
pi log pi� we expect HG��n � HI � The di�erence� HI �HG��n� measures the

information per character captured by our knowledge that the language was generated

by a grammar� It is a measure of the information content of the grammar�

To evaluate the entropy we �rst note that the lengths must obey the McMillan

inequality

P
i �
��i � � �see� for example� �� Theorem ������ This is a general property

of binary trees �any set of bit strings satisfying the pre�x property in e�ect de�nes

a binary tree�� Given any set of codewords� we can create another set of average

length no longer than the original that also represents our messages� observes the

pre�x property� and satis�es the McMillan equality� that is� the new set corresponds

� This does not foreclose the possibility of generating a number of messages in sequence� How�
ever� when we do so� we think of the messages as being generated independently� and the
encoding and decoding processes starting over again each time� �This contrasts with the
notion of a code extension� in which� for encoding purposes� a �xed number of successive in�
dependently generated messages is treated as a single message from a correspondingly large
message set 	
���

� � �



to a complete binary tree ���� Exercise ������������ Since we are searching for optimal

compression� we can assume the equality is satis�ed�

Using Lagrangian techniques�� and ignoring integer constraints� one can show

that the expected size of a compressed message�
P
i Pi�i� is minimized when �i �

� logPi� where the optimization takes place subject to the McMillan equality� log�

arithms throughout this paper are to base �� This immediately shows that H �

�
P
i Pi logPi is a lower bound on the average size of encodings of messages from the

source� H can be shown to be in fact a greatest lower bound �using either code exten�

sions or arithmetic encoding�� Other familiar properties of H follow immediately from

our derivation� For example� if fPig and fQig are probabilities� then

�
X
i

Pi log
Qi

Pi
� �� ���

otherwise� by setting �i �treated as a continuous variable� equal to � logQi� we would

have
P
Pi�i � �

P
i Pi log Pi� but since the set of values� f�ig� constructed in this way

satisfy the McMillan constraint �recall
P
Qi � ��� this contradicts our optimization

argument� �A more direct proof of ��� is possible based on Lagrangian methods
 it

is easy to show that the values Qi for which �
P
i Pi log

Qi
Pi
is minimized� subject toP

iQi � �� is Qi � Pi� for these values of Qi� the sum in ��� is zero��

Hu�man ��� described an optimal algorithm for compressing data of a given source�

The argument that this algorithm provides an optimal code also does not depend on

prior information theory based arguments� We see then that considering compression

oriented concepts as primary� the formula and properties of H follow independently

of the context of communication� and can be used as an alternative development of

information theory� An advantage of this approach� besides providing an independent

and immediately graspable argument supporting the Shannon formula� is that it brings

the theory closer to the heart of theoretical computer science
 parallel to the de�nitions

of the time and space complexity of a problem P in terms of performance measures

of optimal algorithms solving P� we de�ne the information content of an information

generator in terms of a performance measure of an optimal storage algorithm�

We now consider special cases of grammars as models of text generators�

�� Lagrangian techniques extend the basic method of di�erential calculus for �nding an uncon�
strained extremum of a di�erentiable function f�x� of a vector variable x  �x�� x�� � � ��� If the
variables xi are constrained to satisfy� say� a single constraint� g�x�  �� then the maxima and
minima of f must satisfy �L

�xi
 �� where L  f�x�� �g�x� and � �the Lagrange multiplier� is

a constant determined by the constraint �see 	����

� � �



��� Independent character generation

Most compression applications are implicitely based on the assumption that char�

acters are generated independently� This can be represented in terms of a grammar

as follows
 given an alphabet A of m characters fc�� � � � � cmg� we have the m produc�

tions fS � ciS �Pi�g� for S the starting and only non�terminal symbol� VT � A�

and Pi referring to the probability of the character ci occurring� We will arbitrarily

stop the process after n characters have been generated� though simple elaborations of

this model will generate sentences that have a given expected length without such an

external stopping procedure� For example� we could include a special stop�character

with a speci�ed probability of occurrence�

��� Simple Markov model

A natural generalization of the model of independent character generation is that

of a ��rst or higher order� Markov process ���� ���� A �rst�order Markov pro�

cess is a probabilistic process in which the probability of occurrence of an event is

determined only by the immediately preceding event� This model is more �exible

than the model of independent character generation� since probabilities are in�u�

enced by history� however� the memory of a �rst�order Markov process is very limited


Prfxi j xi��� xi��� � � �g � Prfxi j xi��g� for xi the state of the system at time i� Higher

order Markov processes are immediate generalizations of the �rst�order process�

A �rst�order Markov model for an m character alphabet can be represented by a

grammar with VN � fS� S�� � � � � Smg� VT � A� and having the productions��
�
S � ciSi �Pi�

Si � ckSk �Pik��

For simplicity� we assume this process stops after generating n characters� The gener�

alization to higher order processes� in which the probability of a character depends on

a �xed number of preceding characters� is immediate� it is a special case of the model

described in the next section�

��� Variable length Markov model

We can also represent processes in which the probability of a character depends on

a variable number of preceding characters ���� Such a process can be represented by

a grammar that includes production rules of the following form
��
�

S � ciSi �Pi�

Si�i����ir�� � cirSimim�����ir��ir �Pi�i����ir�� � im���ir�

� � �



for some r � � and � � m � r� that is� we have just scanned the string ci�ci� � � � cir���

and the probability is Pi�i����ir�� � im���ir that cir will be generated and a state entered

that is de�ned by the last r�m � characters scanned� A k�th order Markov process�

with k � �� is a special case of this model�

��� General grammar

The grammars de�ned above describe languages that permit the type of sequential

encoding!decoding of text that is customary in data compression
 one can encode text

by scanning characters sequentially and allowing the sequence of characters scanned

to de�ne the state of the encoder� this state then determines the probability of occur�

rence� and thus the codeword� for the next character� But the theoretical strength of

grammars is that they in principle permit modelling sources which produce complexly

structured text� The following simple example is included to indicate the possibilities

inherent in the grammar model� the language it produces cannot be analyzed fully by

the types of statistical approaches generally used for compression�

Consider� then� the language
 fab� aabb� aaabbb� � � �g� i�e�� the language whose al�

phabet is fa� bg and whose sentences are n a�s followed by n b�s� We can represent this

language by a grammar with the following production rules

��
�
S � a b �p�

S � aS b �� � p�

Thus the number of a�s and b�s is a random variable� denoted by N � For this simple

case� we can very easily compute the probability of each sentence
 the sentence made

up of n a�s followed by n b�s has probability Pr�N � n� � �� � p�n��p of occurring�

Also� since in the �nal sentences there are as many a�s as b�s� the �global probability�

of each character is ���� For the grammar

H � �
�X
n�

p�� � p�n�� log�p�� � p�n��� � �
p �p log p� ��� p� log��� p���

Since for this distribution� E�N� �
P�
n���n�p�� � p�n�� � �

p � the average entropy

for a character is �
��p log p � �� � p� log�� � p�� � �

� log � � ���� If we had used the

customary independence assumption� with the probability set to the global probability

of ���� we would have concluded H � �� Thus the grammar resolves at least half of

our uncertainty regarding which character will occur next�

Generally� messages are compressed incrementally� The encoder receives one char�

acter at a time and either on the basis of a preassigned set of probabilities or adaptively�

� � �



using limited memory �Lempel " Ziv �	��� adds to the encoded string� Such an analy�

sis is not possible here
 once the �rst b is encountered� the rest of the text is known� but

keeping track of how many b�s will be needed requires unlimited memory� The current

model suggests that radically di�erent approaches to compression may be possible�

�� Notation and Conventions

It will be useful at this point to de�ne notations that will be heavily used below�

P �s� appropriately subscripted� will denote probabilities� Given a string s�s� � � � sn�

si denotes the i�th character of the string and Psi its probability of occurrence� Psisj
denotes the probability of the character sj occurring next� given that si has just been

generated� In this notation� the indices refer to positions in a string� The si�s are taken

from an alphabet A� Sometimes it will be useful to refer to the i�th character of the

alphabet� ci � A� or of some other set of characters� We will use the notation Pi as the

unconditional probability that ci occurs� and Pij the probability that cj occurs next�

given we have just scanned ci� This notation is extended to denote the probability

that any character in C� a set �or cluster� of characters� occurs by PC� PCi will denote

the probability of ci given some cj � C has occurred� as de�ned below� The C in our

notation re�ects that below the sets will be generated by a clustering algorithm�

Below� we shall need an estimate for the length of the codeword of a message with

probability P of occurrence� we shall use � log P for this purpose� This is an idealized

length since it represents a lower bound on the size of the codeword� However� this

ideal is obtained� or approached� for many codes� For example� this formula is exact

for the Hu�man code of a dyadic probability distribution� that is� a distribution where

each probability is an integral power of ��� �	�� For example� the probability distri�

bution ����� ���� ���� ���� ���� ���� is dyadic� For non�dyadic distributions� there are

many ways of justifying this approximation� for example considering code extensions�

Shannon�Fano coding ��� or arithmetic coding ����

We will use Hu�man coding �as in ��� or ���� in our discussion below� though our

ideas apply to arithmetic coding �as in ��� ���� as well� The reason we are emphasizing

Hu�man coding rather than arithmetic coding or Ziv " Lempel �	� coding� even

though these codes might yield better compression ���� is that Hu�man codes always

encode a given element in the same way� a desirable property in certain applications

�see ����� Further� in practice� Hu�man codes approximate the idealized limit quite

well �see the example in Section ��� so the theory should be adequate for these codes�

� 	 �



�� Hybrid Model

Most desirable for compression would be a full probabilistic grammar correctly

describing the text being encoded� Lacking this� we must rely on statistical models

that capture essential aspects of the text� The simple independence model is clearly

inadequate� The �rst�order Markov model is an appealing substitute� It is a simple

generalization of the independence model� and yet captures some of the statistical de�

pendency that is inherent among the components constituting text� However� text is

made up of segments with rather long� strong dependencies that a �rst�order Markov

model is incapable of representing� Using higher order or variable length models in�

creases the complexity of the analysis�

We propose here a compromise approach� We recognize the need to encode variable

length strings� but carry out this encoding in two stages� First� we identify a small

number of strings that occur frequently in our text� and represent them by single

symbols not already in our alphabet� we then encode the alphabet enhanced by these

symbols as a simple Markov process� Unfortunately� by increasing the size of the

alphabet� this strategy also increases� perhaps substantially� the space requirements of

auxiliary tables� In Section � we will introduce a clustering method that allows us to

accommodate a very large alphabet while limiting the size of auxiliary tables�

��� Implementation considerations

As mentioned in the introduction to the article� we are assuming that text is

generated by a Markov Process� To implement a k�th order Markov model� a distinct

table of probabilities of character occurrence must be de�ned for each string of k

characters� After such a string is scanned� the Hu�man code for the ensuing character

is determined by the probability table of the scanned string� Two problems immediately

arise


�a� One expense of a code is the storage requirement for auxiliary tables� and

this varies with the generation model� If we have m characters� we need store only

m variable length codewords for the simple independence model� this increases to m�

codewords for the �rst�order Markov model and to mk�� for the k�th order Markov

model� If m is ���� a million table entries are needed for a second order model� and

the code tables themselves become a substantial consumer of space resources� Thus�

in practice� one would rarely use higher orders than one� But then


�b� a �rst�order Markov model� while it may improve upon the assumption of

� 
 �



independent character generation� and perhaps may even be quite adequate in general�

fails most conspicuously because of the frequent occurrence of certain strings� especially

common trigrams and words� These often occur substantially more frequently than

expected from the Markov assumption�

In other words� in creating a compression program� we must resolve two con�icting

demands
 the order of the Markov process chosen to describe the character generation

of the given text should on the one hand be made as low as possible to reduce the

space complexity� and on the other hand as high as possible to get a model which is

closer to reality� Our two stage procedure o�ers a trade�o� for the above demands�

Certain strings occur more frequently than expected from the Markov assumption�

We �rst extend our alphabet to include these strings� If A is our current alphabet�

we procede as follows
 if the string s�s� � � � sn� for sk � A� occurs substantially more

often than expected on the basis of the Markov model� recode it as a single symbol� Si�

and treat A� fSig as the alphabet to be encoded� Since� in practice� n will be limited

in size� this process will terminate if continued iteratively� Only strings causing the

largest discrepancies will be transformed in this manner� In the second stage� we apply

a clustering mechanism to the expanded alphabet� The di�culties of identifying the

strings to replace by single symbols in our �rst stage� and then of resolving ambiguities

inherent in reducing actual text to a sequence of symbols from this new alphabet� have

been discussed extensively �	�� ���� ����� We shall only comment on an aspect of this

problem that is illuminated by the information theoretic approach we are taking in this

paper�

��� Measure of worth

We must identify the strings that are to be replaced by single symbols� Processing

all n�grams in order to identify the optimal set is too costly� Fraenkel� Mor " Perl ��

show that even if we restrict the potential n�grams to pre�xes and su�xes of the words

in the text� the problem of �nding an optimal set is NP�complete� One therefore typi�

cally uses a heuristic that is reasonably e�ective� We anticipate that bigrams� trigrams�

and words would be especially practical and useful� so we recommend restricting our

n�grams to these�

We next need a measure of worth� w� for each candidate string� w is used to choose

which strings to translate� A number of candidate measures are possible�

�a� The most naive approach is to tabulate the number of occurrences of each

� �� �



string �w� � frequency of string�� and use the most frequent�

�b� But translating a long string to a single codeword may yield a greater savings

than translating a shorter� though more frequently occurring string� Therefore a more

sensitive� but still easily computable measure� is most commonly used ���� ����
 w� �

�� � ��f for a string that is � characters in length and which occurs f times�

The measure w� can be justi�ed on two grounds� If we think of the compression

process as being implemented in stages� then we �rst compress a number of strings into

one byte codewords� All resulting symbols are then merged with the initial alphabet

and the resulting alphabet is �nally Hu�man encoded� If we procede in this manner�

we would like the �rst stage compression to be as e�ective as possible� w� ranks the

strings according to the savings accrued by replacing each string by a single byte� A

second motivation is that those strings exhibiting the greatest savings in stage one

are likely to be the same as those whose probability of occurrence most exceeds the

expected value as predicted by a Markov model�

�c� The last measure of worth� w�� follows naturally from our discussion of the

encoding of a Markov process� We noted that frequency alone is inadequate as a

criterion for substitution since the compression e�ectiveness of reducing a string to

a single symbol is a�ected by its length as well� But also� a string may occur often

simply because its components are expected to occur frequently� If the string occurs

frequently only because its components do� no earnings occur from reducing the string

to a single symbol� Consider� for example� the string S � s�s� � � � sn� If this has been

generated by the underlying �rst�order Markov process� the probability with which this

string occurs is given by Ps�Ps�s� � � �Psn��sn � The length of the Hu�man encoding of

this string as a single unit will be approximately � log�Ps� � � �Psn��sn�� If the text

is N characters in length and PS is the probability that an occurrence of the string

begins at a independently selected point in the text� then the occurrences of this string

will take up about �PSN log PS amount of storage if each occurrence is encoded as

a unit� But if the characters were encoded individually using the underlying Markov

based probabilities� the collective occurrence of these characters as contributed by this

string will occupy about PSN�� logPs� � � � � � logPsnsn��� bits� since � logPsjsi
would approximate the length of the code for si when it follows sj� But this quantity

is identical to the one describing the storage required if we encode the string as a unit�

Since the two quantities are equal� no savings result�

Since our objective is to select strings that� when replaced by one byte codewords�

� �� �



will minimize storage requirements� the above analysis suggests that the following crite�

rion should be appropriate
 treat a string S as a unit if the savings gained by replacing

it by a single byte are large� The criterion for replacing S by a single byte codeword

thus becomes
 w� � �fS logPS  fS log�Ps�Ps�s� � � ��� �� i�e�� fS log
Ps�Ps�s� ���

PS
� ��

where fS � PSN is the frequency with which the string occurs� Hence w� explicitely

incorporates the correlation between the characters forming the string as well as their

overall frequency �see also �����

�� Clustering

At the end of the �rst step of the algorithm described in Section �� we have a

sequence of m elements� each a member of an alphabet A� such that the occurrences

of these elements are reasonably well described by a �rst�order Markov process� If

we were to continue to the second step directly� we would create tables indicating the

probability of an element occuring given the occurrence of the one just scanned� For a

higher order Markov process� especially with an extended alphabet� this would create

a very large table� We reduce the size of this table by breaking the set of elements we

are encoding into clusters� Then� when creating Hu�man trees� we use the same value�

Psjsi � for the probability that si occurs for all preceding characters� sj� in the same

cluster C ���� Thus� if sj � C� we could denote this shared cluster based probability

by PCsi � If we have m items and t clusters� we need a table of only tm elements to

represent this distribution� instead of the m� needed for a �rst�order Markov process�

Our main interest in this paper is in studying the properties of these clusters and to

garner some insights about information theory� However� we also believe this to be

a practical approach to compression� this belief is encouraged by the results of the

example presented in Section �� The cluster model is represented in Figure ��

Insert Figure � here

Figure �� Cluster model� Characters are partitioned into clusters C�� � � � � Ct� The probability that ci
occurs depends only on ci and the cluster with which the preceding character is associated�

Our task then is �� to decide how to cluster elements� and �� to decide� when

creating the Hu�man trees� what probability PCsi to use for an element si contingent

on that element following a member of the cluster C� We �rst deal with the second

problem� assuming that the partition of the elements into t non�overlapping clusters

fC�� � � � � Ctg is given�

� �� �



��� Cluster probabilities

Suppose that we assign to an arbitrary element� ck � A� the probability #PCk when

it appears after a member of the cluster C� we want the optimal value of #PCk� Thus

f #PCkg is a single probability distribution� approximating the set of distributions fPikg�

for Pik the true probability of ck when it follows ci� for all ci � C� Given f #PCkg� we can

construct a Hu�man tree �or de�ne an interval of appropriate length for arithmetic

coding�� If ck follows cluster C� the length of its codeword will be approximately

� log #PCk�

Thus� if we have just scanned ci � C� the average length of the codeword for

following element is �
Pm
k� Pik log

#PCk� and the overall average length of a codeword�

averaged over all preceding elements� is

H �
X
C

�
�X
ci�C

Pi

�
��

mX
k�

Pik log #PCk

�
A
	

 �

where here and below�
P
C denotes the sum over the clusters C in fC�� � � � � Ctg� and Pi is

the unconditional probability of ci occurring� in a Markov process� this unconditional

long�term probability can be computed from the transition matrix ��� Each term

in brackets is associated with a single cluster and depends on a single distribution�

#PCk� which can be changed independently of the others� thus H is minimized if each

expression in brackets is minimized� To �nd the optimal f #PCkg for a given cluster� we

form the Lagrangian

L � �
X
ci�C

mX
k�

PiPik log #PCk � ��
mX
k�

#PCk � ���

and minimize it for values #PCk subject to
P
k
#PCk � �� We �nd� for cluster C�

#PCk �
X
ci�C

PiPik
PC

� ��a�

where

PC �
X
ci�C

Pi� ��b�

Denote this optimal value for #PCk by PCk� which is clearly a probability� it is a weighted

average of the probability distributions constituting C� For any cluster C� we shall refer

to fPCkg as the probability distribution associated with the cluster�

� �� �



Note that Pi�PC is the probability of ci� given that an element in C occurred�

Since Pik is the probability that ck will occur� given that ci �ci � C� was just scanned�

PiPik�PC is the probability that ci� a element in C� was just scanned and ck follows�

summing over i for ci � C gives the average of Pik over i for ci � C� Thus PCk is

interpretable as the probability of ck� given that some element in C was just scanned�

We can now write H as

H �
X
C

PC��
X
k

PCk log PCk� 	
X
C

PCHC� ��c�

with

HC � �
X
k

PCk log PCk ��d�

the entropy de�ned by the cluster based probability� PCk is the �average� probability

within the cluster C� below� when we want to emphasize this fact we will adopt the

notation H �C for HC � HC is the �ideal length� of the encoding of an element following

an element in C� Our task then is� given a value t� to �nd a partition of A into t

clusters� such that H is minimized�

Two special cases are particularly interesting


�a� If t � �� then we are treating the entire alphabet as a single element� Then PC

is �� and PCk is simply the a priori probability of ck � the value we would use if we

ignored the Markov property�

�b� If C is a single element� fcig� then PC � Pi and PCk � Pik� Now HC is in e�ect

Hi� the single character entropy� If each element is in its own cluster �t � m�� then we

have a full Markov model�

��� Clustering loss function

The task of �nding the optimal partition is likely to be very di�cult� Indeed� very

similar problems have been found to be NP�complete� We instead search for heuristics

that are reasonable� A straightforward and often e�ective approach is to adopt a greedy

algorithm� beginning with the individual elements as elementary clusters and at each

stage merging several clusters� We de�ne the loss� L� in average storage required per

element due to merging clusters into superclusters as L � H� �H�� where the indices

on H distinguish the entropy of the original partition �H�� from that of the new one

�H��� We will usually omit from L the subscripts that de�ne the partitions merged to

create L since it is generally clear which clusters are involved�

� �� �



L can be reexpressed in several useful ways


�a� Since the original partition is a re�nement of the new� merged partition� L

can be naturally decomposed into components� each associated with one new cluster�

and the analysis carried out separately on each� this expresses L in terms of losses

associated with each cluster� Consider� then� the contribution to L of disjoint clusters

fCrg combining to form C� To make this decomposition explicit� L can be written as

L �
X
C

PC�HC �
X
Cr�C

PCr
PC

HCr� 	
X
C

PCLC � ��a�

where

LC � HC �
X
Cr�C

PCr
PC

HCr ��b�

is the loss associated with C� The overall� weighted loss� L� is the average of the

unweighted losses incurred when forming the individual superclusters� If we are simply

combining several clusters into a single cluster� C� then ��a� becomes

L � PCLC� ��c�

with the terms associated with the unmodi�ed clusters cancelling�

�b� We can rewrite LC more evocatively as

LC � H �C �
�HC� ���

where H �C � HC and �HC �
P
Cr�C

PCr
PC

HCr �
P
Cr�C

PCr
PC

�
�
P
k PCrk logPCrk

�

 that

is� LC is the di�erence between the entropy of the average probability distribution in

the cluster and the average of the individual entropies of the clusters comprising it�

Ultimately� a cluster is made up of individual probability distributions� If PCr � Pi

and PCrk � Pik� equation ��� describes the loss of merging a number of elementary

distributions into a cluster�

�c� We would also like a representation of L directly in terms of the basic cluster

probabilities� Expanding HC and HCr � PCLC can be rewritten as

PCHC �

�
� X
Cr�C

PCrHCr

�
A �

�
��PC

X
k

PCk log PCk

�
A �

X
Cr�C

PCr

�
��X

k

PCrk logPCrk

�
A �

But PCPCk �
P
ci�C PiPik �

P
Cr�C

�P
ci�Cr PiPik

�
�
P
Cr�C PCrPCrk� so

PCLC �
X
Cr�C

PCr

�
��X

k

PCrk logPCk

�
A� X

Cr�C

�
��PCr

X
k

PCrk log PCrk

�
A

�
X
Cr�C

PCr

�
��X

k

PCrk log
PCk
PCrk

�
A

� �� �



and L is the sum of these values


L �
X
C

X
Cr�C

PCr

�
��X

k

PCrk log
PCk
PCrk

�
A � ��a�

Thus we get from the de�nition of LC in terms of L �eq� ��a��

LC �
X
Cr�C

PCr
PC

�
��X

k

PCrk log
PCk
PCrk

�
A � ��b�

����� Interpretation of loss function

We can now make the following observations


First note that LC is a weighted average of terms of the form �
P
Pk log

Qk
Pk
� with

fPkg and fQkg probabilities� As shown above �eq� ����� this sum is greater than zero

unless Pk 	 Qk� in which case the sum is zero� Thus LC will be zero if and only if

PCk � PCrk for all k� and each Cr that is being merged into C� Otherwise LC � �� i�e��

the �loss� is a genuine loss � the average length of the code resulting from a merging

of clusters does increase� unless all the probabilities being merged into one cluster are

identical� The closer LC is to zero� the better the clustering�

Second� note that the term in parenthesis in equation ��b� has the form

�
P
Ptrue log

Papprox
Ptrue

� where a cluster based distribution is approximating the compo�

nent distributions comprising it� This formula has previously been used as a measure

of how well an approximate probability distribution agrees with the true distribution

it is estimating �see� e�g�� ����� The appearance of this measure here� motivated by

compression considerations� suggests an easily understandable� intuitively satisfying�

interpretation
 given a probability distribution fPig and an approximation to that

distribution fQig� we can use as a measure of the goodness of the approximation the

expected deterioration in code length of using the approximate distribution as a sub�

stitute for the true distribution when compressing the data�

The interpretation of the above approximation formula is important enough to

merit a more detailed argument� As we saw above� if we approximate Pk� the prob�

ability associated with the character ck� by Qk� the length of the encoding of ck will

be about � logQk and the expected length of the code based on Qk will be about

�
P
Pk logQk� The optimal length is �

P
Pk logPk� Thus the expected deterioration

is �
P
Pk log

Qk
Pk
� In our problem� Pk is the true probability of an element ck occur�

ring� conditional on having scanned a speci�c element� say ci� Qk is our cluster based

� �� �



approximation of Pk� In general� any set of probabilities and approximations to them

can be interpreted in this manner� The interpretation of the measure as an increase in

expected coding size is concrete and easily understandable� and provides an alternative

to the more abstract idea of �information loss��

In constructing LC � a number of distributions� fPCrkg� are approximated by PCk�

The weighted average as given above generalizes the formula measuring how well one

distribution estimates another
 LC estimates how well one distribution estimates a set

of distributions�

����� Special cases

It is instructive to note explicitely the form taken by the loss function for a few

special cases�

�a�We �rst note the special case in which each Cr is an isolated element
 Cr � fcrg�

Then PCrk � Prk� LC � HC �
P
r
Pr
PC
Hr� and Hr is �

P
k Prk log Prk� the entropy

associated with �rst having scanned cr� Expanding� we �nd

LC �

�
��X

k

PCk logPCk

�
A� X

cr�C

Pr
PC

�
��X

k

Prk logPrk

�
A �

Thus the cummulative loss contributed by a cluster is the length associated with the

cluster minus the average of the lengths associated with the elements making up the

cluster� This quantity is interesting because it gives us the overall deterioration due

to the clustering of elements at any given stage� As such� LC can be interpreted as a

general measure of the lack of cohesiveness of a set of probability distributions� Note

that if for all k� Pik � Pjk for ci 
� cj in C� then LC � �� and LC always is greater than

or equal to zero� Also� LC is symmetric over ci � C�

�b� A second interesting case is when all of the clusters merge into a single cluster�

the entire alphabet A� this quantity is a measure of �headroom�
 how much capacity

we still have for loss as we continue clustering� This is given by L � HA �
P
PCHC �

with HA � �
Pm
k� Pk log Pk�

�c� Another interesting measure is L � HA �
Pm
i� PiHi� with HA as before

and Pk the unconditional probability of ck occuring
 L is then the loss ignoring the

Markov structure of the generator� This measure indicates whether we should con�

sider the Markov model at all� since HA is the average length if we created our code

under the assumption of independent character generation� This argument can be

� �� �



pursued further� by asking what is the information content of a Markov process ����

��� Consider a string of n characters generated by the Markov process� The proba�

bility of the string S � s�s� � � � sn is PS � Ps�Ps�s� � � �Psn��sn � and the information

content of the generator is H � �
P
S PS logPS � Expanding the logarithm and col�

lecting terms� this becomes H � H�  �n � �� �HA� where H� � �
P
Pi logPi and

�HA �
P
i Pi��

P
k Pik logPik� �

P
i PiHi� i�e�� �HA denotes �HC� where the cluster C is

the entire alphabet A�

Thus the information content per character�H�n� for large n� approaches �HA� The

inequality LA � � or �from ���� H �A � �HA� tells us that if the generator is Markov�

we can only improve compression by recognizing this� More generally� if we have a

Markov process� recognizing this gives us information about the strings that are being

generated� �HA is the information content in the string once we recognize the string as

being generated by a Markov process� H �A�
�HA is� in e�ect� the information conveyed

to us� when being told that the string was created by a Markov generator� Alternatively�

when a message is generated by a stochastic device with structure� recognizing that

structure conveys information about the strings that result� and this information can

be used to reduce the information content of the string� quanti�ed as the number of

bits needed to store it�

�d� Finally� we consider the e�ect of merging two clusters into one� this will form

the basis of the algorithm proposed in Section ���� Suppose then that the disjoint

clusters C� and C� are merged to form C� Equation ��a� becomes L � PCLC� with

LC � HC�

PC�
PC

HC�  
PC�
PC

HC�

�
� and since it is easy to see that PCk �

PC�PC�k
�PC�PC�k

PC��PC�
�

we get the more explicit form

LC � �
mX
k�

PC�PC�k
�PC�PC�k

PC�
�PC�

log
PC�PC�k

�PC�PC�k
PC�

�PC�

 
PC�

PC�
�PC�

mX
k�

PC�k
log PC�k  

PC�
PC�

�PC�

mX
k�

PC�k
log PC�k�

���

LC is a measure of dissimilarity of two clusters� and� more generally� a weighted measure

of the dissimilarity of two probability distributions
 in common with other measures

of dissimilarity� it takes positive values� is symmetric in the clusters� and is equal to

zero if and only if fPC�kg � fPC�kg and thus equal to fPCkg� In general� if we wish

to compute a loss for combining two probability distributions� but do not have explicit

values for PC� and PC�� we can set both equal to �!��

��� Clustering heuristic

� �	 �



This suggests a heuristic for creating the clusters
 beginning with the individual

elements as primary clusters� we iteratively combine pairs of clusters� At each stage�

we combine Cr and Cs to form cluster Crs provided that Lrs 	 PCrsLCrs� the loss

after combination� is less than that for any other pair of clusters� Thus Lrs � Luv�

for u� v denoting any other pair of clusters that are candidates for combination� Note

that the critical value determining whether to combine two clusters is the product

of the closeness of the two clusters and the likelihood of an element of these clusters

occurring� Thus we may well �nd ourselves combining quite di�erent clusters if their

elements occur rarely�

Clustering procedures ��� often begin by creating a measure of similarity� and then

continue by somehow combining items using this measure� Although the measure of

similarity is a critical component of this process� it tends to be chosen on an ad hoc

basis� Our clustering procedure is unusual in being based on a measure of association

that itself was directly developed out of our objectives for creating clusters� The follow�

ing procedure is therefore used �repeating the required equations� for the convenience

of the reader�


�� Initialization� For each element ci �treated as a primary cluster�� store PCi � Pi�

PCik � Pik and Hi � �
P
k Pik logPik�

�� Iteration� At each stage� compute Lrs �r � s� for each pair of clusters �Cr� Cs�


�a� PCrs � PCr  PCs �eq� ��b��

�b� PCrsk � �PCrPCrk  PCsPCsk��PCrs �eq� ��a��

�c� Hrs � �
mX
k�

PCrsk logPCrsk �eq� ��d��

�d� LCrs � Hrs �

PCr
PCrs

HCr  
PCs
PCrs

HCs

�
�eq� ��b��

�e� Lrs � PCrsLCrs �eq� ��c��

After the initial stage� Lrs need be computed only between the new cluster and

those older clusters remaining after the merged clusters are removed�

�� Either combine the two clusters that yield the smallest value for Lrs or stop if

adequate clustering has taken place� As our stopping criterion� we could use a

threshold on the loss function� stopping when the cost exceeds this threshold�

another possibility is to continue until the set of clusters has been reduced to a

predetermined number�

�� If clusters Cr and Cs are combined to form cluster Crs 	 C


� �
 �



�a� remove clusters Cr and Cs from consideration�

�b� enter cluster C�

�c� associate with C the values PC � PCk and HC as computed in ���a� ���b� and

���c��

�� Return to step ��

Each iteration reduces the number of clusters by one� The matrix of L�s for clus�

ter pairs must be updated only for pairs involving the new cluster� We keep track of

the partition of the primary elements into clusters using well�known Union�Find algo�

rithms �see ���� Our greedy algorithm is not necessarily optimal� but should produce

reasonable results� The end structure permits us to calculate LC and L�

�� Example

In this section� we work through a detailed example� We wanted our example

to be manageably small in the size of both the text and the alphabet� yet not to be

completely arti�cial� Both goals are met by using music as our text source� We chose

the Sonata in C major for Flute and Basso continuo� BWV ���� � by Johann Sebastian

Bach� consisting of �ve movements with a total of ���� notes� For simplicity� the notes

were considered modulo an octave� and sharps and �ats were ignored�that is� the

�alphabet� consists of the seven notes in the scale of C
 fC�D�E�F�G�A�Bg� Also�

the �rst note of each movement was used only for computing the �rst�order Markov

transition probabilities of the following notes� but were not counted themselves as

belonging to the �text�� leaving a text of ���� �characters� to be compressed� As

a baseline� we use the space required by �xed length encoding� Since we have seven

characters� we need dlog� �e � � bits per character� or ���� bits all told�

Table �� First�order Markov probabilities

A B C D E F G P � N

A ������ ������ ������ ����
� ������ ������ �����
 ������ ���

B ������ ������ ������ ���
�� ������ ������ ����
� ������ ���

C ������ �����
 ������ ������ ������ ������ ���
�� ������ ���

D ����
� �����
 ������ ������ ������ ���
�
 ���
�
 ������ ���

E ����
� ������ �����
 ������ ������ ������ ������ ������ ���

F ������ ������ ������ ����
� ������ ����
� ������ ������ ���

G ������ ������ ������ ������ ������ ����

 ����
� ������ ���

� �� �



Table � summarizes the statistical characteristics of our text� The �rst seven

columns of each row of Table � contain the conditional probabilities of a character

occurring� given that the character de�ning the row has just been observed� Row i of

the column labelled P � gives the unconditional probability of character i occurring�

The column labelled N gives the total number of occurrences of the row character�

�a� Simple Hu�man code� If we don�t recognize the Markov property� we could

construct a straightforward Hu�man code based on the unconditional probabilities

P �
i � The unconditional distribution of the seven characters is suprisingly uniform� The

corresponding Hu�man code is almost a �xed length code�

Any Hu�man code can be described by a string of integers� hn�� � � � � n�i� where ni�

for � � i � �� is the number of codewords of length i bits� and � is the length of the

longest codeword �the depth of the tree�� Note that
P�
i� ni is the size of the alphabet�

in our case �� and that
P�
i� ni�

�i � �� a property of all Hu�man codes� For the

unconditional distribution� the Hu�man code can be described in this manner by the

string h�� �� �i
 there are no codewords of length �� a single codeword of length � and

six codewords of length �� This encoding uses ���� bits to encode the entire text� or

����� bits per character on the average� Comparing this to a �xed length code� we �nd

that simple Hu�man coding yields ���$ compression� This modest result is due to the

uniformity of the distribution�

�b� Markov model code� At the opposite extreme� we can treat the text as having

been generated by a Markov process and encode a character using the Hu�man tree

derived from the probability distribution associated with the preceding character� The

results of such an encoding are presented in Table ��

The �rst column of Table � gives a description of the Hu�man tree for each of the

conditional probability distributions� The second column gives the average codeword

length �ACL� of the characters de�ning the rows
 that is� the average codeword length

as given in row i is the average number of bits needed to encode a character following

an instance of character i� Finally� the last column of Table � gives the entropies of

the conditional distributions of the corresponding rows in Table ��

� �� �



Table �� Statistical information on conditional probability distributions

Hu�man code ACL Entropy

A h�� �� �� �� �i ����� �����

B h�� �� �� �� �i ����� �����

C h�� �� �� �i ����� ����


D h�� �� �� �i ����� ����


E h�� �� �� �� �i ���
� �����

F h�� �� �� �� ���i ����
 �����

G h�� �� �� �i ����� �����

The conditional probabilities are much more skewed than the unconditional dis�

tribution� This is evident from Table � and also from the forms of the corresponding

Hu�man trees ��rst column of Table ��� We �nd that one needs ���� bits to encode

the text as a �rst�order Markov process� or ����� bits per character on the average� a

�	��$ compression gain over the baseline �xed length code� The more than three�fold

improvement in compression over the simple Hu�man model is due to the emergence

of skewed distributions when conditional probabilities are considered � this skewing

disappears when all the distributions are merged� For this example� the recognition of

the Markov property yields therefore a signi�cant improvement�

The last two columns of Table � show that the ACL�s are in fact quite close to the

entropy� the theoretical lower bound
 on our example� the Hu�man codes are between

�$ and �$ longer� Our decision to use the entropy� rather than the actual length� in

our compression heuristic is experimentally justi�ed by the fact that both entropy and

ACL induce the same ordering on the given set of distributions
 sorting the rows by

decreasing values of either ACL or the entropy yields the permutation CGDEAFB�

Our example is too small to allow the replacement of some highly correlated strings

by a new symbol� as suggested in Section �� If we had chosen a piece of music in some

other key� there would be notes which would almost always be preceded by a sharp or

�at sign� Such pairs� �sharp� note� or ��at� note�� would probably be good candidates

for substitution� Similarly� runs and chords would be interesting possibilities� For our

example� we concentrate on the clustering proposed in Section ��

�c� Cluster�based code� Intermediate between procedures �a� and �b� is basing the

compression on the probability distributions associated with clusters of characters� To

do this� we �rst must compute the table of losses� L� Table � contains this information

as well as the contents of the subsequent loss tables� The order of the characters in the

� �� �



rows and columns of Table � has been chosen so as to permit us to encompass all this

information in a single table� The loss table corresponding to the initial state �� clus�

ters� each consisting of a singleton� is the sub�matrix bounded by rows D and G and by

columns F and E� The cluster with minimum loss ������� is DF � To compute this loss�

we �rst �nd PDF � PD  PF � ������ �����	 � ������� We then compute the prob�

ability distribution PDF�k � �����	�� �����	� ������� ������� ����	�� ������� ��������

For example� the CDF cluster probability of A is ������� � ������  �����	 �

������� � ������ � ����	�� The entropy for the CDF cluster� based on the proba�

bility distribution PDF�k� is ������	� log� ����	�  � � �� � ����	� the average entropy

of the components is ������
������ � �����  

������
������ � ����� � ������ The weighted loss� LDF �

is thus ������ � �����	 � ������� or ������ as appears in the table�

Table �� Clustering loss matrix

F A C B G E DF AC BG EBG

D ����� ����� ����� ����� ����� ���
�

F ���
� ����� ����
 ���
� ���
�

A ����� ����� ����� ���
� �����

C ����� ����� ���
� �����

B ����� ����
 ����� �����

G ����� ���

 ���
�

E ����� ���
� �����

DF ���
� ����� �����

AC ����� �����

Note that requiring LC� the unweighted loss associated with a cluster� to be mul�

tiplied by PC � the probability of the cluster� was critical in the choice of DF 
 the loss

of DF before multiplication by PC was ����	 � ����� � ���	�� which was only second

smallest� following the corresponding quantity for AC� which was ������

The next step in the clustering algorithm is to eliminate the rows and columns

corresponding to D and F and to create a new column for the cluster DF � The

resulting loss table is the sub�matrix of Table � bounded by rows A and E and by

columns C and DF � The minimum in this sub�matrix is LAC � ������ so the next

cluster formed is AC� The resulting loss matrix is the sub�matrix bounded by rows

B and DF and by columns G and AC� The minimum is LBG � ������ therefore the

next cluster to form is BG� with loss matrix given by the sub�matrix bounded by rows

E and AC and by columns DF and BG� The minimum is now LEBG � ����	� so

EBG is created� At this stage� the loss matrix contains only � elements
 column EBG

� �� �



and the element at the intersection of row DF and column AC� ������ the latter is the

smallest of the three� Thus the �nal cluster to be formed is ACDF �

Table � and Figure � summarize the results� Each line of Table � corresponds to

one iteration� i�e�� the creation of a new cluster� the �rst line corresponds to the initial�

full �rst�order Markov model� and the last line to the model of independent character

generation� The values in the column labelled compression are the percent reductions

in storage compared to the �xed length baseline model� For each newly formed cluster�

the following information is given
 a characterization of the corresponding Hu�man

code� the partition of the alphabet into clusters at this stage of the heuristic� the new

total length of the encoding� and� in the last column� the overall compression obtained

using the given partition� Figure � represents this information graphically�

Table �� Summary of clustering heuristic

new cluster Hu�man code partition total length compression

A B C D E F G �
�� �����

DF h�� �� �� �i A B C E G DF �

� �
���

AC h�� �� �� �i B E G DF AC ���� �����

BG h�� �� �� �i E DF AC BG ���� �����

BGE h�� �� �� ���i DF AC BGE ���� �����

ACDF h�� �� �� �i BGE ACDF ���� �����

ACDFBGE h�� �� �i ACDFBGE ���� ����

Insert Figure 	 here

Figure �� Clustering dendogram� This diagram indicates� as we go from the bottom up� the formation
of clusters� The vertical level at which two clusters merge represents the number of bits needed to
store the text using that cluster representation� The implied savings in space over the baseline case
is given in parenthesis�

The �rst three clusters formed are of pairs of notes a third �two notes� apart� The

statistical reason for this is that both notes are strongly associated with the interme�

diate note � for example� the probability of E occurring is high if either a D or an F

has just occurred�

The results exhibit the internal�space!compression tradeo�
 the more clusters we

use� the more internal space we need for storing the di�erent Hu�man trees� but the

less we need for encoding the text and� therefore� the better the compression� In this

example� recognizing just a few clusters enables us to realize much of the advantages

� �� �



of using a Markov model� this result should be tested on larger samples of text�

�� Conclusion

It has often been observed that Shannon�s theory of information o�ers important

insights for data compression� In this paper� we showed that this favor can in part be

returned� and that the possibility of compression� coupled with a model of text gener�

ation� permits an independent derivation of the Shannon entropy measure� Possibly�

other aspects of a complete information theory can also be developed from this perspec�

tive� That information theory is a fertile generator of ideas valuable for compression�

however� is rea�rmed in this paper� It provides a natural measure of association of

two probability distributions� and makes possible the clustering algorithm that forms

the basis of the compression approach suggested above�

References

��� Aho A�V�� Hopcroft J�E�� Ullman J�D�� The Design and Analysis of Computer Algorithms�

Addison�Wesley� Reading� MA �������

��� Ash R�� Information Theory � John Wiley � Sons� New York �������

��� Cleary J�G�� Witten I�H�� Data compression using adaptive coding and partial string match�

ing� IEEE Trans� on Communications� COM	�� ���
�� ��������

�
� Even S�� Graph Algorithms� Computer Science Press �������

��� Feller W�� An Introduction to Probability Theory and Its Applications� Vol I� John Wiley �

Sons� Inc�� New York �������

��� Fraenkel A�S�� Mor M�� Perl Y�� Is text compression by pre�xes and su�xes practical�

Acta Informatica � ���
�� �����
��

��� Hadley� G�� Nonlinear and Dynamic Programming � Addison�Wesley� Reading� Mass� �������

��� Hamming R�W�� Coding and Information Theory� second edition� Prentice�Hall� Englewood

Cli�s� NJ ���
���

��� Heaps H�S�� Information Retrieval� Computational and Theoretical Aspects� Academic Press�

New York ����
��

��� Hopcroft J�E�� Ullman J�D�� Introduction to Automata Theory� Languages and Computa�

tion� Addison�Wesley� Reading� MA �������

���� Hu�man D�� A method for the construction of minimum redundancy codes� Proc� of the IRE


 ������ ���
������

���� Khinchin A�� Mathematical Foundations of Information Theory� Dover� New York �������

� �� �



���� Klein S�T�� Bookstein A�� Deerwester S�� Storing text retrieval systems on CD�ROM�

compression and encryption considerations� ACM Trans� on Information Systems � ���
��

��������

��
� Knuth D�E�� The Art of Computer Programming� Vol I� Fundamental algorithms� Addison�

Wesley� Reading� Mass� �������

���� Lelewer D�A�� Hirschberg D�S�� Data Compression� ACM Computing Surveys �� ���
��

��������

���� Lewis II� P�M�� Approximating probability distributions to reduce storage requirements� In�

formation and Control � ������ ��������

���� Llewellyn J�A�� Data compression for a source with Markov characteristics� The Computer

Journal� � ���
�� ��������

���� Loh L�S�� Mommens J�H�� Raviv J�� Method of achieving data compaction utilizing

variable�length dependent coding techniques� US Patent ����
�� �������

���� Longo G�� Galasso G�� An application of informational divergence to Hu�man codes� IEEE

Trans� on Inf� Th� IT	�� ���
�� ������

��� Ramabadran T�V�� Cohn D�L�� An adaptive algorithm for the compression of computer

data� IEEE Trans� on Communications� COM	�� ���
�� ��������

���� Rissanen J�� Langdon G�G�� Arithmetic coding� IBM J� Res� Dev� �� ������ ��������

���� Rissanen J�� Langdon G�G�� Universal modeling and coding� IEEE Trans� on Inf� Th� IT	

�� ���
�� ������

���� Rubin F�� Experiments in text �le compression� Comm� ACM �� ������ ��������

��
� Shannon C�E�� A mathematical theory of communication� Bell System Tech� J�� �� ����
�

�������� ��������

���� Sneath P�H�A�� Sokal R�R�� Numerical Taxonomy� The Principles and Practice of Numerical

Classi�cation� W�H� Freeman and Company� San Francisco �������

���� Storer J�A�� Data Compression� Methods and Theory � Computer Science Press� Rockville�

Maryland ���

��

���� Walker V�R�� Compaction of names by x�grams� Proc� ASIS Vol � ������ ��������

���� Witten I�H�� Neal R�M�� Cleary J�G�� Arithmetic coding for data compression� Comm�

ACM � ���
�� ��������

���� Ziv J�� Lempel A�� Compression of individual sequences via variable�rate coding� IEEE Trans�

on Inf� Th� IT	�
 ����
� ��������

� �� �


