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Abstract

We consider the problem of finding the smallest context-
free grammar that generates exactly one given string of
length n. The size of this grammar is of theoretical in-
terest as an efficiently computable variant of Kolmogorov
complexity. The problem is of practical importance in ar-
eas such as data compression and pattern extraction.

The smallest grammar is known to be hard to approxi-
mate to within a constant factor, and an o(log n/log log n)
approximation would require progress on a long-standing
algebraic problem [10]. Previously, the best proved ap-
proximation ratio was O(n1/2) for the BISECTION algo-
rithm [8]. Our main result is an exponential improvement
of this ratio; we give an O(log(n/g∗)) approximation al-
gorithm, where g∗ is the size of the smallest grammar.

We then consider other computable variants of Kolo-
mogorov complexity. In particular we give an O(log 2 n)
approximation for the smallest non-deterministic finite
automaton with advice that produces a given string. We
also apply our techniques to “advice-grammars” and
“edit-grammars”, two other natural models of string com-
plexity.

∗e-mail: {moses,dingliu,mp,sahai}@cs.princeton.edu
†e-mail: {e lehman,arasala,abhi}@mit.edu
‡e-mail: rinap@cisco.com

1 Introduction

This paper addresses the smallest grammar problem;
namely, what is the smallest context-free grammar that
generates exactly one given string σ? For example, the
smallest context-free grammar generating the string:

σ = a rose is a rose is a rose

is as follows:

S → BBA
A → a rose
B → A is

The size of a grammar is defined to be the total number
of symbols on the right sides of all rules. The small-
est grammar is known to be hard to approximate within
a small constant factor. Further, even for a very re-
stricted class of strings, approximating the smallest gram-

mar within a factor of o
(

log n
log log n

)
would require progress

on a well-studied algebraic problem [10]. Previously, the
best proven approximation ratio was O(n1/2) for the BI-
SECTION algorithm [8]. Our main result is an exponential
improvement of this ratio.

Several rich lines of research connect this elegant prob-
lem to fields such as Kolmogorov complexity, data com-
pression, pattern identification, and approximation algo-
rithms for hierarchical problems.
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The size of the smallest context-free grammar generat-
ing a given string is a natural, but more tractable variant
of Kolmogorov complexity. (The Kolmogorov complex-
ity of a string is the description length of the smallest Tur-
ing machine that outputs that string.) The Turing machine
model for representing strings is too powerful to be ex-
ploited effectively; in general, the Kolmogorov complex-
ity of a string is uncomputable. However, weakening the
model from Turing machines to context-free grammars re-
duces the complexity of the problem from the realm of un-
decidability to mere intractability. How well the smallest
grammar can be approximated remains an open question.
In this work we make significant progress toward an an-
swer: our main result is that the “grammar complexity”
of a string is O(log(n/g∗))-approximable in polynomial
time, where g∗ is the size of the smallest grammar.

This perspective on the smallest grammar problem sug-
gests a general direction of inquiry: can the complex-
ity of a string be determined or approximated with re-
spect to other natural models? Along this line, we con-
sider the problem of optimally representing an input string
by a non-deterministic finite automaton guided by an ad-
vice string. We show that the optimal representation of
a string is O(log2 n)-approximable in this model. Then
we consider context-free grammars with multiple produc-
tions per nonterminal, again guided by an advice string.
This modified grammar model turns out, unexpectedly, to
be essentially equivalent to the original.

The smallest grammar problem is also important in the
area of data compression. Instead of storing a long string,
one can store a small grammar that generates it, provided
such a grammar can be found. This line of thought has led
to a flurry of research [8, 12, 16, 7, 1, 9] in the data com-
pression community. Kieffer and Yang show that a good
solution to the grammar problem leads to a good uni-
versal compression algorithm for finite Markov sources
[7]. Empirical results indicate that grammar-based data
compression is competitive with other techniques in prac-
tice [8, 12]. Surprisingly, however, the most prominent
algorithms for the smallest grammar problem have been
shown to exploit the grammar model poorly [10]. In par-
ticular, the SEQUITUR [12], BISECTION [8], LZ78 [16],
and SEQUENTIAL [14] algorithms all have approximation
ratios that are Ω(n1/3). In this paper, we achieve a loga-
rithmic ratio.

The smallest grammar problem is also relevant to iden-

tifying important patterns in a string, since such patterns
naturally correspond to nonterminals in a compact gram-
mar. In fact, an original motivation for the problem was to
identify regularities in DNA sequences [11]. Since then,
smallest grammar algorithms have been used to highlight
patterns in musical scores and uncover properties of lan-
guage from example texts [4]. All this is possible because
a string represented by a context-free grammar remains
relatively comprehensible. This comprehensibility is an
important attraction of grammar-based compression rela-
tive to otherwise competitive compression schemes. For
example, the best pattern matching algorithm that oper-
ates on a string compressed as a grammar is asymptoti-
cally faster than the equivalent for LZ77 [6].

Finally, work on the smallest grammar problem extends
the study of approximation algorithms to hierarchical ob-
jects, such as grammars, as opposed to “flat” objects, such
as graphs, CNF-formulas, etc. This is a significant shift,
since many real-world problems have a hierarchical na-
ture, but standard approximation techniques such as lin-
ear and semi-definite programming are not easily applied
to this new domain.

The remainder of this paper is organized as follows.
Section 2 defines terms and notation. Section 3 con-
tains our main result, an O(log(n/g∗)) approximation al-
gorithm for the smallest grammar problem. Section 4
follows up the Kolmogorov complexity connection and
includes the results on the complexity measure in other
models. We conclude with some open problems and new
directions.

2 Definitions

A grammar G is a 4-tuple (Σ, Γ, S, ∆), where Σ is a set
of terminals, Γ is a set of nonterminals, S ∈ Γ is the start
symbol, and ∆ is a set of rules of the form T → (Σ∪Γ)∗.
A symbol may be either a terminal or nonterminal. The
size of a grammar is defined to be the total number of
symbols on the right sides of all rules. Note that a gram-
mar of size g can be readily encoded using O(g log g) bits,
and so our measure is close to this natural alternative.1

1More sophisticated ways to encode a grammar [7, 14] relate the
encoding size in bits to the above definition of the size of a grammar in
a closer manner, and give theoretical justification to this definition.
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Since G generates exactly one finite string, there is ex-
actly one rule in ∆ defining each nonterminal in Γ. Fur-
thermore, G is acyclic; that is, there exists an ordering
of the nonterminals in Γ such that each nonterminal pre-
cedes all nonterminals in its definition. The expansion of
a string of symbols η is obtained by replacing each non-
terminal in η by its definition until only terminals remain.
The expansion of η is denoted 〈η〉, and the length of 〈η〉
is denoted [η].

Throughout, symbols (terminals and nonterminals) are
uppercase, and strings of symbols are lowercase Greek.
We use σ for the input string, n for its length, g for the
size of a grammar that generates σ, and g∗ for the size of
the smallest such grammar.
|G| denotes the size of grammar minus number of non-

terminals. Without loss of generalily we do not allow
unary rules of the form A → B; then |G| is at least half
the size of G.

3 An O(log(n/g∗)) Approximation
Algorithm

We now give an O(log(n/g∗))-approximation algorithm
for the smallest grammar problem. The description is di-
vided into three sections. First, we introduce a variant of
the well-known LZ77 compression scheme. This serves
two purposes: it gives a lower bound on the size of the
smallest grammar for a string and is the starting point for
our construction of a small grammar. Second, we intro-
duce balanced binary grammars, a class of well-behaved
grammars that our procedure employs. We also introduce
three basic operations on balanced binary grammars. Fi-
nally, we present the main algorithm, which translates a
string compressed using our LZ77 variant into a gram-
mar at most O(log(n/g∗)) times larger than the smallest.

3.1 LZ77

Our algorithm for approximating the smallest grammar
employs a variant of the LZ77 compression scheme [15].
In this variant, a string σ is represented by a list of pairs
(p1, l1), . . . , (ps, ls). Each pair (pi, li) represents a string,
and the concatenation of these strings is σ. In particular,
if pi = 0, then the pair represents the string li, which is

a single terminal. If pi �= 0, then the pair represents a
portion of the prefix of σ that is represented by the pre-
ceding i − 1 pairs; namely, the li terminals beginning at
position pi in σ. Note that, unlike in the standard LZ77,
we require that the substring referred to by (p i, li) be fully
contained within the prefix of σ generated by the previous
pairs. The size of the LZ77 representation of a string is s,
the number of pairs employed. The smallest LZ77 repre-
sentation can be easily found using a greedy algorithm in
polynomial time. More efficient algorithms are possible;
for example, [5] gives an O(n log n) time algorithm for
our variant of LZ77.

As observed in [12], a grammar G for a string can be
converted in a simple way to an LZ77 representation. It
is not hard to see that this transformation gives an LZ77
list of at most |G| + 1 pairs. Thus we have:

Lemma 1 The size of the smallest grammar for a string
is lower bounded by the size of the smallest LZ77 repre-
sentation for that string.

Our O(log(n/g∗))-approximation algorithm essen-
tially inverts this process, mapping an LZ77 sequence to
a grammar. This direction is much more involved, be-
cause the strings represented by pairs can arbitrarily over-
lap each other whereas the rules in a grammar have less
flexibility. Hence, one of our main technical contributions
is an efficient procedure to perform this conversion.

3.2 Balanced Binary Grammars

Our approximation algorithm works exclusively with a
restricted class of well-behaved grammars referred to as
balanced binary grammars. A binary rule is a grammar
rule with exactly two symbols on the right side. A binary
grammar is a grammar in which every rule is binary. Two
strings of symbols, β and γ, are α-balanced if

α

1 − α
≤ [β]

[γ]
≤ 1 − α

α

for some constant α between 0 and 1
2 . Intuitively, α-

balanced means “about the same length”. Note that in-
verting the fraction [β]

[γ] gives an equivalent condition. The
condition above is also equivalent to saying that the length
of the expansion of each string ([β] and [γ]) is between an
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α and a 1 − α fraction of the length of the combined ex-
pansion ([βγ]). An α-balanced rule is a binary rule in
which the two symbols on the right are α-balanced. An
α-balanced grammar is a binary grammar in which ev-
ery rule is α-balanced. For brevity, we usually shorten
“α-balanced” to simply “balanced”.

If G is a binary grammar, |G| = size of G
2 = number of

non-terminals in G. So in the rest of this section we shall
consider the number of non-terminals of a binary gram-
mar instead of its size.

The remainder of this section defines three basic opera-
tions on balanced binary grammars. Each operation adds
a small number of rules to an existing balanced grammar
to produce a new balanced grammar that has a nontermi-
nal with specified properties. These operations are sum-
marized as follows.

AddPair: Produces a balanced grammar containing
a nonterminal with expansion 〈XY 〉 from a bal-
anced grammar containing symbols X and Y . The
number of rules added to the original grammar is

O
(
1 +

∣∣∣log [X]
[Y ]

∣∣∣).

AddSequence: Produces a balanced grammar con-
taining a nonterminal with expansion 〈X1 . . . Xt〉
from a balanced grammar containing symbols
X1 . . . Xt. The number of rules added is

O
(
t
(
1 + log [X1...Xt]

t

))
.

AddSubstring: Produces a balanced grammar con-
taining a nonterminal with expansion β from a bal-
anced grammar containing a nonterminal with β as
a substring of its expansion. Adds O(log |β|) new
rules.

For these operations to work correctly, we require that α
be selected from the limited range 0 < α ≤ 1 − 1

2

√
2,

which is about 0.293. These three operations are detailed
below.

3.2.1 The AddPair Operation

We are given a balanced grammar with symbols X and
Y and want to create a balanced grammar containing a
nonterminal with expansion 〈XY 〉. Suppose that [X ] ≤
[Y ]; the other case is symmetric.

First, we decompose Y into a string of symbols as fol-
lows. Initially, this string consists of the symbol Y itself.
Thereafter, while the first symbol in the string is not in
balance with X , we replace it by its definition. A routine
calculation, which we omit, shows that balance is eventu-
ally achieved. At this point, we have a string of symbols
Y1 . . . Yt with expansion 〈Y 〉 such that Y1 is in balance
with X . Furthermore, note that Y1 . . . Yi is in balance with
Yi+1 for all 1 ≤ i < t by construction.

Now we create new rules. Initially, we create a new
rule Z1 → XY1 and declare this to be the active rule.
The remainder of the operation is proceeds in steps. At
the start of the i-th step, the active rule has the form Z i →
AiBi, and the following three invariants hold:

1. 〈Zi〉 = 〈XY1 . . . Yi〉
2. 〈Bi〉 is a substring of 〈Y1 . . . Yi〉.
3. All rules in the grammar are balanced, including the

active rule.

The relationships between strings implied by the first two
invariants are indicated in the following diagram:

Zi︷ ︸︸ ︷
X Y1 Y2 . . .︸ ︷︷ ︸

Ai

. . . Yi−1 Yi︸ ︷︷ ︸
Bi

Yi+1 . . . Yt

After t steps, the active rule defines a nonterminal Zt with
expansion 〈XY1 . . . Yt〉 = 〈XY 〉 as desired.

The invariants stated above imply some inequalities
that are needed later to show that the grammar remains
in balance. Since Y1 . . . Yi is in balance with Yi+1, we
have:

α

1 − α
≤ [Yi+1]

[Y1 . . . Yi]
≤ 1 − α

α

Since 〈Bi〉 is a substring of 〈Y1 . . . Yi〉 by invariant 2, we
can conclude:

α

1 − α
≤ [Yi+1]

[Bi]
(1)

On the other hand, since 〈Zi〉 is a superstring of
〈Y1 . . . Yi〉 by invariant 1, we can conclude:
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[Yi+1]
[Zi]

≤ 1 − α

α
(2)

Below we describe how during a step a new active rule
is created. For clarity, we supplement the text with dia-
grams. In these diagrams, a rule Zi → AiBi is indicated
with a wedge:

Preexisting rules are indicated with broken lines, and new
rules with dark lines.

At the start of the i-th step, the active rule is Zi →
AiBi. Our goal is to create a new active rule that defines
Zi+1 while maintaining the three invariants. There are
three cases to consider.
Case 1: If Zi and Yi+1 are in balance, then we create a
new rule:

Zi+1 → ZiYi+1

This becomes the active rule. It is easy to check that the
three invariants are maintained.

If case 1 is bypassed, then Zi and Yi+1 are not in bal-
ance; that is, the following assertion does not hold:

α

1 − α
≤ [Yi+1]

[Zi]
≤ 1 − α

α

Since the right inequality is (2), the left inequality must
be violated. Thus, hereafter we can assume:

α

1 − α
>

[Yi+1]
[Zi]

(3)

Case 2: Otherwise, if Ai is in balance with BiYi+1, then
we create two new rules:

Zi+1 → AiTi

Ti → BiYi+1

The first of these becomes the active rule. It is easy to
check that the first two invariants are maintained. But the
third, which asserts that all new rules are balanced, re-
quires some work. The rule Zi+1 → AiTi is balanced
by the case assumption. What remains is to show that the
rule Ti → BiYi+1 is balanced; that is, we must show:

α

1 − α
≤ [Yi+1]

[Bi]
≤ 1 − α

α

The left inequality is (1). For the right inequality, begin
with (3):

[Yi+1] <
α

1 − α
[Zi]

=
α

1 − α
([Ai] + [Bi])

≤ α

1 − α

(
1 − α

α
[Bi] + [Bi]

)
≤ 1 − α

α
[Bi]

The equality follows from the definition of Z i by the rule
Zi → AiBi. The subsequent inequality uses the fact that
this rule is balanced, according to invariant 3. The last
inequality uses only algebra and holds for all α ≤ 0.381.

If case 2 is bypassed then Ai and BiYi+1 are not in
balance; that is, the following assertion is false:

α

1 − α
≤ [Ai]

[BiYi+1]
≤ 1 − α

α

Since Ai is in balance with Bi alone by invariant 3, the
right inequality holds. Therefore, the left inequality must
not; hereafter, we can assume:

α

1 − α
>

[Ai]
[BiYi+1]

(4)

Combining inequalities (3) and (4), one can use algebraic
manipulation to establish the following bounds, which
hold hereafter:

[Ai]
[Bi]

≤ α

1 − 2α
(5)

[Yi+1]
[Bi]

≤ α

1 − 2α
(6)
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Then [Bi] > 1, as say [Ai] ≥ 1 > α
1−2α ; i.e., Bi is not a

terminal. So let Bi be defined by the rule Bi → UV .
Case 3: If we bypass cases 1 and 2, we create three new

rules:

Zi+1 → PiQi

Pi → AiU

Qi → V Yi+1

The first of these becomes the active rule. We must check
that all of the new rules are in balance. We begin with
Pi → AiU . In one direction, we have:

[Ai]
[U ]

≥ [Ai]
[Bi]

≥ α

1 − α

The first inequality follows as [Bi] = [UV ] > [U ]. The
second inequality uses the fact that Ai and Bi are in bal-
ance. In the other direction, we have:

[Ai]
[U ]

≤ [Ai]
α[Bi]

≤ 1
1 − 2α

≤ 1 − α

α

The first inequality uses the fact that Bi → UV is bal-
anced, and the second follows from (5). The last inequal-
ity holds for all α < 0.293.

Next, we show that Qi → V Yi+1 is balanced. In one
direction, we have:

[Yi+1]
[V ]

≤ [Yi+1]
α[Bi]

≤ 1
1 − 2α

≤ 1 − α

α

The first inequality uses the fact that Bi → UV is bal-
anced, the second uses (6), and the third holds for all
α < 0.293. In the other direction, we have:

[Yi+1]
[V ]

≥ [Yi+1]
[Bi]

≥ α

1 − α

The first inequality follows as [Bi] > [V ], and the second
is (1).

Finally, we must check that Zi+1 → PiQi is in balance.
In one direction, we have:

[Pi]
[Qi]

=
[AiU ]

[V Yi+1]

≤ [Ai] + (1 − α)[Bi]
α[Bi] + [Yi+1]

=
[Ai]
[Bi]

+ (1 − α)

α + [Yi+1]
[Bi]

≤
α

1−2α + (1 − α)
α + α

1−α

≤ 1 − α

α

The equality follows from the definitions of P i and Qi.
The first inequality uses the fact that the rule Bi → UV
is balanced. The subsequent equality follows by dividing
the top and bottom by [Bi]. In the next step, we use (5) on
the top, and (1) on the bottom. The final inequality holds
for all α ≤ 1

3 . In the other direction, we have:

[Pi]
[Qi]

=
[AiU ]

[V Yi+1]

≥ [Ai] + α[Bi]
(1 − α)[Bi] + [Yi+1]

=
[Ai]
[Bi]

+ α

(1 − α) + [Yi+1]
[Bi]

≥
α

1−α + α

(1 − α) + α
1−2α

≥ α

1 − α
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As before, the first inequality uses the definitions of Pi

and Qi. Then we use the fact that Bi → UV is balanced.
We obtain the second equality by dividing the top and bot-
tom by [Bi]. The subsequent inequality uses the fact that
Ai and Bi are in balance on the top and (6) on the bottom.
The final inequality holds for all α ≤ 1

3 .
All that remains is to upper bound the number of rules

created during the ADDPAIR operation. At most three
rules are added in each of the t steps. Therefore, it suf-
fices to upper bound t. Recall that t is determined when
Y is decomposed into a string of symbols: each time we
expanded the first symbol in the string, the length of the
expansion of the first symbol decreases by a factor of at
least 1 − α. When the first symbol is in balance with
X , the process stops. Therefore, the number of steps is
O(log([Y ]/[X ])). Since the string initially contains one
symbol, t is O(1 + log([Y ]/[X ])). Therefore, the num-
ber of new rules is O (1 + log([Y ]/[X ])). The case of
[X ] > [Y ] is symmetric, and the common bound for the

two cases can be written as O
(
1 +

∣∣∣log [X]
[Y ]

∣∣∣).

3.2.2 The AddSequence Operation

The ADDSEQUENCE operation is a generalization of AD-
DPAIR. We are given a balanced grammar with nonter-
minals X1 . . . Xt and want to create a balanced grammar
containing a nonterminal with expansion 〈X1 . . .Xt〉.

But we solve this problem in a much simpler manner,
using the ADDPAIR operation repeatedly. Consider plac-
ing the Xi at the leaves of a balanced binary tree. (To sim-
plify the analysis, assume that t is a power of two.) We
create a nonterminal for each internal node by combining
the nonterminals at the child nodes using ADDPAIR. Re-
call that the number of rules that ADDPAIR creates when
combining nonterminals X and Y is:

O

(
1 +

∣∣∣∣log
[X ]
[Y ]

∣∣∣∣
)

= O (1 + log [X ] + log [Y ])

Let c denote the hidden constant on the right, and let s
equal [X1 . . .Xt]. Creating all the nonterminals on the
bottom level of the tree generates at most

ct/2 + c
t∑

i=1

log [Xi] ≤ ct/2 + ct log
s

t

rules. (The inequality follows from the concavity of log.)
Similarly, the number of rules created on the second level
of the tree is at most ct/4+c(t/2) log s

t/2 , because we pair
t/2 nonterminals, but the sum of their expansion lengths
is still s. In general, on the i-th level, we create at most

ct/2i+1 + c(t/2i) log
s

t/2i
= c(t/2i) log

s

t
+ ct(i +

1
2
)/2i

new rules. Summing i from 0 to log t, we find that the
total number of rules created is at most

log t∑
i=0

c(t/2i) log
s

t
+ ct(i +

1
2
)/2i = O

(
t
(
1 + log

s

t

))
where s = [X1 . . . Xt].

3.2.3 The AddSubstring Operation

We are given a balanced grammar containing a nontermi-
nal with β as a substring of its expansion. We want to
create a balanced grammar containing a nonterminal with
expansion exactly β.

Let T be the nonterminal with the shortest expansion
such that its expansion contains β as a substring. Let
T → XY be its definition. Then we can write β = βpβs,
where the prefix βp lies in 〈X〉 and the suffix βs lies in
〈Y 〉. (Confusingly, βp is actually a suffix of 〈X〉, and βs

is a prefix of 〈Y 〉.) We generate a nonterminal that ex-
pands to the prefix βp, another that expands to the suffix
βs, and then merge the two with ADDPAIR. The last step
generates only O(log |β|) new rules. So all that remains
is to generate a nonterminal that expands to the prefix, βp;
the suffix is handled symmetrically. This task is divided
into two phases.

In the first phase, we find a sequence of nonterminals
X1 . . . Xt with expansion equal to βp. To do this, we be-
gin with an empty sequence and employ a recursive pro-
cedure. At each step, we have a remaining suffix (initially
βp) of some current nonterminal (initially X). During
each step, we consider the definition of the current non-
terminal, say X → AB. There are two cases:

1. If the remaining suffix wholly contains 〈B〉, then we
prepend B to the nonterminal sequence. The remain-
ing suffix becomes the portion of the old suffix that
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overlaps 〈A〉, and the current nonterminal becomes
A.

2. Otherwise, we keep the same remaining suffix, but
the current nonterminal becomes B.

A nonterminal is only added to the sequence in case 1.
But in that case, the length of the desired suffix is scaled
down by at least a factor 1 − α. Therefore the length of
the resulting nonterminal sequence is t = O(log |β|).

This construction implies the following inequality,
which we will need later:

[X1 . . .Xi]
[Xi+1]

≤ 1 − α

α
(7)

This inequality holds because 〈X1 . . . Xi〉 is a suffix of
the expansion of a nonterminal in balance with X i+1.
Consequently, X1 . . . Xi is not too long to be in balance
with Xi+1.

In the second phase, we merge the nonterminals in the
sequence X1 . . . Xt to obtain the nonterminal with expan-
sion βp. The process goes from left to right. Initially, we
set R1 = X1. Thereafter, at the start of the i-th step, we
have a nonterminal Ri with expansion 〈X1 . . . Xi〉 and
seek to merge in nonterminal Xi+1. There are two cases,
distinguished by whether or not the following inequality
holds:

α

1 − α
≤ [Ri]

[Xi+1]

• If so, then Ri and Xi+1 are in balance. (In-
equality (7) supplies the needed upper bound on
[Ri]/[Xi+1].) Therefore, we add the rule Ri+1 →
RiXi+1.

• If not, then Ri is too small to be in balance with
Xi+1. We use ADDPAIR to merge the two, which
generates O(1+log ([Xi+1]/[Ri])) new rules. Since
[Xi+1] ≤ [Ri+1], the number of new rules is O(1 +
log ([Ri+1]/[Ri])).

Summing the number of rules created in this process
gives:

t∑
i=1

O

(
1 + log

[Ri+1]
[Ri]

)
= O(t + log[Rt])

= O(log |β|)
The second bound follows from the fact, observed previ-
ously, that t = O(log |β|) and from the fact that 〈Rt〉 =
βp. Generating a nonterminal for the suffix βs requires
O(log |β|) rules as well. Therefore, the total number of
new rules is O(log |β|) as claimed.

3.3 The Algorithm

We now combine all the tools of the preceding two Sec-
tions to obtain an O(log(n/g∗))-approximation algorithm
for the smallest grammar problem.

First, we apply the LZ77 variant described
in Section 3.1. This gives a sequence of pairs
(p1, l1) . . . (ps, ls). By Lemma 1, the length of this
sequence is a lower bound on the size of the smallest
grammar for σ; that is, s ≤ g∗. Now we employ the tools
of Section 3.2 to translate this sequence to a grammar.
We work through the sequence from left to right, building
up a balanced binary grammar as we go. Throughout, we
maintain an active list of grammar symbols.

Initially, the active list is l1, which must be a single
character since p1 = 0 necessarily. In general, at the be-
ginning of the i-th step, the expansion of the active list is
the string represented by (p1, l1) . . . (pi, li). Our goal for
the step is to augment the grammar and alter the active
list so that the expansion of the symbols in the active list
is the string represented by (p1, l1) . . . (pi+1, li+1).

If pi+1 = 0, we can accomplish this goal by simply
appending li+1 to the active list. If pi+1 �= 0, then it spec-
ifies a substring βi of the expansion of the active list. If
βi is contained in the expansion of a single symbol in the
active list, then we use ADDSUBSTRING to create a non-
terminal with expansion βi using O(log |βi|) rules. This
nonterminal is then appended to the active list.

On the other hand, if βi is not contained in the expan-
sion of a single symbol in the active list, then it is the
concatenation of a suffix of 〈X〉, all of 〈A1 . . . Ati〉, and a
prefix of 〈Y 〉, where XA1 . . . AtiY are consecutive sym-
bols in the active list. We then perform the following op-
erations:

8



1. Construct a nonterminal M with expansion
〈A1 . . . Ati〉 using ADDSEQUENCE. The number of
new rules produced is O(ti(1 + log(|βi|/ti))).

2. Replace A1 . . . Ati in the active list by the single
symbol M .

3. Construct a nonterminal X ′ with expansion equal
to the prefix of βi in 〈X〉 using ADDSUBSTRING.
Similarly, construct a nonterminal Y ′ with expan-
sion equal to the suffix of βi in 〈Y 〉 using ADDSUB-
STRING. This produces O(log |βi|) new rules in to-
tal.

4. Create a nonterminal N with expansion 〈X ′MY ′〉
using ADDSEQUENCE on X ′, M , and Y ′. This cre-
ates O(log |βi|) new rules. Append N to the end of
the active list.

Thus, in total, we add O(ti+ti log(|βi|/ti)+log |βi|) new
rules during each step. The total number of rules created
is:

O

(
s∑

i=1

ti + ti log(|βi|/ti) + log |βi|
)

= O

(
s∑

i=1

ti +
s∑

i=1

ti log(|βi|/ti) +
s∑

i=1

log |βi|
)

The first sum is upper bounded by the total number of
symbols inserted into the active list. This is at most two
per step (M and N ), which implies

∑s
i=1 ti ≤ 2s.

To upper bound the second sum, we use the concavity
inequality:

s∑
i=1

ai log bi ≤
(

s∑
i=1

ai

)
log
(∑s

i=1 aibi∑s
i=1 ai

)

and set ai = ti, bi = |βi|/ti to give:

s∑
i=1

ti log
|βi|
ti

≤
(

s∑
i=1

ti

)
log
(∑s

i=1 |βi|∑s
i=1 ti

)

= O
(
s log

(n

s

))

The latter inequality uses the fact that
∑s

i=1 |βi| ≤ n and
that

∑s
i=1 ti ≤ 2s. Note that the function x log(n/x) is

increasing for x up to n/e, and so this inequality holds
only if 2s ≤ n/e. This condition is violated only when
input string (length n) turns out to be only a small factor
(2e) longer than the LZ77 sequence (length s). If we de-
tect this special case, then we can output the trivial gram-
mar S → σ and achieve a constant approximation ratio.

By concavity again, the third sum is upper bounded by
s log

� |βi|
s ≤ s log n

s and thus total grammar size is at
most:

O
(
s log

n

s

)
= O

(
g∗ log

n

g∗

)

where we use the inequality s ≤ g∗ and, again, the ob-
servation that x log(n/x) is increasing for x < n/e. The
preceeding analysis establishes the following theorem.

Theorem 1 The optimum grammar for a string can be
approximated efficiently within a factor of O(log (n/g∗)),
where n is the length of the string and g∗ is the size of the
smallest grammar.

Remark: Universal source codes are of great interest
in information theory. Grammar-based codes have been
shown to be universal provided there is a good grammar
transform and assuming a finite alphabet [7, 14]. [7] de-
fines a grammar-transform to be asymptotically compact
if for every string σ, it produces a grammar Gσ such that
|Gσ |/|σ| = o(1), as |σ| goes to infinity. Though not the
motivation for our work, we note that our algorithm is
asymptotically compact. To see this, note that for a fi-
nite alphabet, the number of pairs in the LZ77 represen-
tation of σ is g = O( n

log n ), where n = |σ| (e.g. Lemma

12.10.1, [3]). So g log(n/g) = O(n log log n
log n ) and hence

|Gσ |/n = O( log log n
log n ) = o(1). It then follows from Theo-

rem 7 in [7] that there is a source code based on our gram-
mar transform which is universal with a maximal point-

wise redundancy of O( (log log n)2

log n ).2

2In fact by Theorem 8 in [7], by modifying the transform to give
an irreducible grammar a better redundancy of O(log log n

log n
) can be

achieved. One way to modify the algorithm is to post-process the gram-
mar in a straight-forward way by applying the Reduction Rules in [7]
(Section VI). This can be done in polynomial time.
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4 Kolmogorov complexity in related
models

The complexity of a string is a natural question of theo-
retical importance. Kolmogorov complexity is an elegant
way to define this notion. It is the description length of the
smallest Universal Turing machine program which prints
the string. But it is well-known that this is an uncom-
putable measure of complexity. Thus we are led to the
idea of defining a computable measure of the complexity
of strings. A natural approach to defining such a measure
is to restrict the computation model under which the string
is generated.

We take the most natural candidate restrictions: in-
stead of Turing machines we restrict ourselves to non-
deterministic finite automata and context-free grammars.
We make precise the notion of generating strings under
such a model later. Then we ask the question of whether
the string complexity under these models can be effi-
ciently estimated. Although the problems are known to
be NP-hard, we show that efficient algorithms with good
approximation ratios exist.

The grammar model, which forms the focus of this
work, turns out to be closely related to both the models
mentioned above. The problem cast in the NFA model
reduces to a two-level grammar model, for which we
develop an O(log2 n) approximation algorithm. In the
grammar model above we used a CFG which generates a
language containing a single string to define the complex-
ity of the string. Another natural possibility, which we
call the advice-grammar model, encodes an input string
with a CFG (which can potentially generate an infinite
number of strings) and an advice string. The advice string
specifies how the production rules of the CFG should be
applied such that only the specified string is produced. We
show that the complexities in these two models are equiv-
alent within a constant factor. Hence our main result on
grammar approximation implies that we can approximate
the CFG-based complexity of a string (either definition)
within a logarithmic factor.

4.1 NFA-complexity of a string

A Non-deterministic Finite Automaton (NFA) is specified
by a set of states and a transition function between the

states. To associate an NFA with a string we consider it as
a Mealy machine, which outputs a string on each transi-
tion. An NFA is said to generate the string that it outputs
during an entire sequence of transitions from the start state
to a final state. Thus an NFA can generate many strings,
and we have to provide an advice to specify which tran-
sition to take at each point when multiple transitions are
possible. To measure the complexity of the input string,
we count both the NFA cost, which is the total length of
the strings appearing on the transition edges, and the ad-
vice cost which is simply the number of advices required.
Having fixed this measure of complexity, it is easy to see
that without loss of generality we can have just one state
(apart from a final state) and all the transitions are from
this state to itself.3 This is identical to a two-level restric-
tion of our grammar model- with one rule (for the start
symbol) corresponding to the advice string, and one rule
for each transition.

In a two-level grammar, only the definition of the start
symbol may contain non-terminals; the definitions of all
other non-terminals contain only terminals. The prob-
lem is to find the smallest two-level grammar for a string.
This problem resembles the optimal dictionary problem
in which the goal is to find the best possible dictionary
of codewords used to compress the input string. Storer
[13] shows that this problem is NP-hard. However, sev-
eral practical algorithms have been developed to address
this problem. In this section, we outline an algorithm with
a O(log2 n) approximation ratio.

Theorem 2 The 2-level grammar compression problem
is O(log2 n)-approximable.

Proof: The main idea is to recast the two-level gram-
mar compression problem as a disjoint set cover problem.
Given a string σ, define the ground set to consist of the
n positions in the input string σ such that each position
of σ contributes a distinct element. For every collection
of non-overlapping instances of a substring η of σ, define
a covering set consisting of all the positions contained in
those instances. For example, if the string abc appears

3Note that this is possible only because we charge unit cost for each
advice, which is unjustified if we consider the bit representation of the
advice. But this affects the complexity measure by at most a factor of
logarithm of the number of different transitions of the NFA.
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k times without overlap, then we generate 2k − 1 cov-
ering sets for this substring. The cost of a covering set
with string η and some t non-overlapping instances is the
length of η plus t. In addition, for each character in σ, we
define a covering set with cost one that contains only that
character. It is not hard to see that this reduces the small-
est two-level grammar problem to the problem of covering
the ground set with a minimum cost collection of disjoint
covering sets.

If we relax the condition that the cover consist of dis-
joint sets, then the cost of the optimum cover can only de-
crease. Furthermore, we can obtain an overlapping cover
that has cost at most 1+ lnn times the optimum using the
well-known greedy algorithm for set-cover [2].

This overlapping cover is converted to a two-level
grammar as follows. First we modify the cover so that
no instance of a string in any covering set is redundant for
achieving the cover, by simply removing the redundant in-
stances systematically. This ensures that a disjoint cover-
ing of σ can be obtained from the instances in the covering
sets by taking at most one substring of each instance. Now
consider a covering set (in the modified cover) consisting
of instances of a substring η. We define a non-terminal
for η, non-terminals for the halves of η, quarters of η and
so forth until η is partitioned into single characters. The
total length of all these definitions generated by η is at
most log n times the length of η. Now any substring of η
is expressible using a sequence of at most log n of these
non-terminals. In particular, for each instance of η, we
can express the portion of that instance not covered by
previously-selected sets. Thus for each instance we add
at most log n symbols to the rule of the start-symbol (and
to the size of the grammar). Since we incur an approx-
imation factor of log n in approximating the cover, the
resulting grammar is at most O(log2 n) larger than the
optimum.

All that remains is to describe how the greedy set cover
algorithm is applied. Potentially, there could be exponen-
tially many covering sets. To overcome this, at each step
we consider every distinct substring η of σ. There are
at most n2 substrings. For each i from 1 to |σ|/|η|, we
use dynamic programming to find the collection of i non-
overlapping instances of η that cover the greatest num-
ber of previously uncovered characters in the ground set.
Thus, for each η and i we narrow the search to one can-
didate covering set. From among the candidate covering

sets, we select the one which maximizes the number of
new elements covered divided by (|η| + i).

4.2 Advice-Grammar

Instead of restricting the grammar to produce exactly one
string one could think of a general CFG and a program
or advice-string for expanding the CFG such that ex-
actly one string is produced. In a general CFG a sin-
gle non-terminal may have many production rules and
cyclic dependencies are also allowed. With at most a
constant factor increase in the size of the CFG, we re-
strict the non-terminals to be of one of the two kinds:
concatenation non-terminals, with exactly one binary pro-
duction, or choice non-terminals with rules of the form
A → X0|X1| . . . |XtA , where the Xi are any symbols.
We call such a CFG a canonical CFG.

Advice-grammar CA consists of a CFG C and an
advice-string of integers, A. To expand the advice-
grammar, one starts off expanding the CFG depth-first,
but on encountering a choice non-terminal the next inte-
ger from the advice-string is read and used to choose the
production to be used. We define the complexity of the
advice-grammar as |CA| = |C| + |A|, where |C| is the
number of non-terminals in C and |A| is the length of the
advice-string A.

Remarkably, as we show now, this seemingly more
powerful model is not more than a constant factor more
efficient than the grammar we have been considering.

Define the partial expansion of a concatenation non-
terminal as an expansion till terminals or choice non-
terminals. Note that there cannot be any production loop
without a choice non-terminal involved, and so the par-
tial expansion gives rise to a finite tree, called the partial
expansion tree (PET for short), with terminals and choice
non-terminals as the leaves (the latter will be referred to as
the choice leaves of the PET). Two non-terminals are said
to be equivalent if they have the same partial expansion.
A canonical CFG G ′ is a transform of a canonical CFG G
if they have the same terminals and choice non-terminals
and for every concatenation non-terminal in G there is an
equivalent non-terminal in G ′, and the choice rules in G ′

are derived from that in G by replacing any concatenation
non-terminal by its equivalent in G ′.

11



Lemma 2 Suppose C is a canonical CFG with |C| = g.
Then we can construct a transform of C, C ′ such that
|C′| = O(g) and every concatenation non-terminal A in
C′ satisfies the following:

• If more than one choice non-terminal appears in the
partial expansion of A, then A → XY where both
X and Y have choice non-terminals in their partial
expansions.

• If A has only one choice non-terminal in its partial
expansion, then the corresponding choice leaf ap-
pears in the PET of A at a depth of at most 2.

Then, in A’s PET, the number of nodes in the spanning
sub-tree containing the root and all the choice leaves in it
is at most a constant times the number of choice leaves.

In the appendix we prove the above Lemma and use it
to prove the following:

Theorem 3 Suppose CA is an advice-grammar, with
|C| = g and |A| = a. Then there exists a grammar G
with |G| = O(g + a), producing the same string as CA.

4.3 Edit Grammars

The fact that both the natural variants of CFGs are equiva-
lent suggests the robustness of grammar based string com-
plexity. We further explore the robustness of the model,
by allowing edit-rules into the grammar. We show that
this extended model can affect the complexity of the string
by at most a logarithmic factor. Further our algorithm
gives a logarithmic approximation under this model too.

An edit-rule is a rule of the form A → X [editop],
where X is a symbol (which might in turn be a non-
terminal defined by an edit-rule), and editop is a single
edit operation; we restrict ourselves to the following three
kinds of edit operations: insert, delete and replace a char-
acter. The edit operation specifies the position in 〈X〉
where the edit is to be performed, and in case of insert and
replace, the character to be introduced.4 The semantics of

4It is sometimes reasonable to define other edit operations. For in-
stance one could allow a prefix/suffix operation. In this case the result-
ing edit-grammar becomes as powerful as LZ77 representation, within a
constant factor. Or, one could allow insert/replace to introduce arbitrary
symbols instead of terminals, which doesn’t change the model signifi-
cantly.

the edit operation is the natural one: 〈A〉 is obtained by
performing editop on 〈X〉. An edit rule incurs unit cost.
An edit-grammar is called binary or balanced depending
on the non-edit (concatenation) rules in it.

We show that edit-grammars are well-approximated by
usual grammars. For this we introduce a representation
of the string called edit-LZ77. In the edit-LZ77 represen-
tation of a string, instead of pairs as in LZ77, we have
triplets (pi, li, [editlist]). editlist consists of a list of
primitive operations (insert/delete/replace) to be applied
to the sub-string generated by the (pi, li) part of the triplet,
one after the other. Each primitive operation will point
to a location in the sub-string (which might have already
been modified by the preceding operations in the list) and
prescribe an insert, delete or replace operation. The edit-
cost of a triplet is the number of edit operations in the
triplet’s list.

Along the lines of Lemma 1 we get the following
lemma.

Lemma 3 If G is a binary edit-grammar with g concate-
nation rules and k edit rules, then there is an edit-LZ77
representationL of the string generated by G, with at most
g + 1 triplets and a total edit cost of k.

We observe that edit-LZ77 is approximated within a
constant factor by the usual LZ77.

Lemma 4 If L is an edit-LZ77 list for a string σ, with t
triplets and a total edit cost of k, then there is an LZ77 list
L′ for σ with at most t + 2k pairs.

Proof: We can replace a triplet (pi, li, [editlist]) where
editlist has ki operations, by at most 1 + 2ki pairs: at
most 1 + ki pairs to refer to the sub-strings into which
the ki edit operations split the sub-string generated by the
triplet, and at most ki pairs to represent the inserts and
replaces.

From the above two lemmas and the procedure from
Section 3.3 we conclude the following.

Theorem 4 The optimum edit-grammar for a string can
be approximated efficiently within a factor of O(log n) by
a grammar, where n is the length of the string.

12



5 Future Work

The smallest grammar problem has a theoretically inter-
esting connection to Kolmogorov complexity, practical
relevance in the areas of data compression and pattern
extraction, and a hierarchical structure that is evident in
other real-world problems.

One line of research leading from this problem is the
study of string complexity with respect to other natu-
ral models. For example, the grammar model could be
extended to allow a non-terminal to take a parameter.
One could then write a rule such as T (P ) → PP , and
write the string xxyzyz as T (x)T (yz). Presumably as
model power increases, approximability decays to un-
computability.

The O(log n
g )-approximation algorithm presented here

runs in near-linear time and hence can be used in a po-
tentially practical grammar-based compression algorithm.
Empirical study is required to determine its effectiveness
compared to other compressors. On the theoretical front,
it would be interesting to explore new probabilistic mod-
els of sources for which it performs well.

Also, while an o
(

log n
log log n

)
approximation algorithm

for the smallest grammar problem would require progress
on the well-studied addition chain problem, it is only
known that the optimal grammar cannot be approximated
to within a small constant unless P = NP. Thus, nailing
down the actual hardness of the smallest grammar prob-
lem remains an intriguing open problem.

Finally, many other important real-world problems
share the hierarchical structure of the smallest grammar
problem. For example, suppose one must design a digital
circuit that computes the logical AND of various, spec-
ified subsets of the input signals. How many two-input
AND gates suffice? This amounts to a variant of the
smallest grammar problem where non-terminals represent
sets rather than strings. We know of neither an approxi-
mation algorithm nor hardness of approximation result for
this natural question.
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A.1 Proof of Theorem 3

First we prove Lemma 2.
PROOF of LEMMA 2. Non-terminals whose partial ex-

pansions contain only terminals are copied as such into C ′.
We describe how to introduce equivalent non-terminals in
C′ for each of the remaining concatenation non-terminal
in C by adding at most a constant number of (concate-
nation) rules. We process the remaining concatenation
non-terminals in C (which contain at least one choice non-
terminal in their partial expansion) in increasing order of
the size of (number of symbols in) their partial expan-
sions. For all non-terminals A that we process we produce
an equivalent non-terminal A′ in C′ ensuring the follow-
ing (in addition to the condition in the lemma): In the
PET of A′, the depth of both the leftmost choice leaf and
the rightmost choice leaf is at most 3.

We proceed inductively. Consider processing A →
XY . If neither X nor Y had to be processed before, we
just set A′ = A and add the rule A′ → XY (this is the
base case). If X (resp Y ) is a concatenation non-terminal
in C′ we would have already processed it and added an
equivalent non-terminal X ′ (resp Y ′) to C ′. Consider sim-
ply making a concatenation rule X ′Y ′. This may have
the (at most) two choice leaves of interest- the leftmost
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Figure 1: Making a new rule in the proof of Lemma 2. The
shaded sub-trees are the choice leaves of interest.

and the rightmost ones- at a depth of at most four in the
resulting PET. Figure 1 shows a general scenario, with a
maximum of eight possible sub-trees, two of which are
the leaves of interest. We can arrange the (at most) eight
sub-trees into a tree such that the leaves are at depth three
or higher, and they fall on either side of the root. This
can be done by making at most 7 new rules, the one at
the root being A′. If there is only one leaf of interest,
it can be pushed up to depth 2. When we finish pro-
cessing the concatenation non-terminals in C, we com-
plete the construction of C ′ by adding rules for each of
the choice non-terminals from C (replacing any concate-
nation non-terminal appearing in the RHS by equivalent
non-terminals).

PROOF of THEOREM 3. By Lemma 2 we assume
w.l.o.g that C satisfies the condition in the lemma, with
|C| = O(g). A symbol is called choice-free if its partial
expansion has only terminals. First we add all rules for
choice-free non-terminals in C to G. There are O(g) such
rules. Figure A.1 gives a recursive algorithm to add other
rules to G; we call this algorithm on the start symbol of C.

It is easy to see that in the resulting grammar G, the
non-terminal returned by the top-level call to DE-ADVICE

expands to the string produced by CA. We claim that the
number of rules added to G by this call is O(a). Note
that new rules are produced at nodes in C which have at
least one choice leaf below it in the PET of the last choice
non-terminal occurring in the recursion; that is, the nodes
at which new rules are produced are exactly the ones in
the spanning sub-tree of a PET which spans the root of
the PET and the choice leaves. At each choice leaf in
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Procedure DE-ADVICE(X)
{ i is a global variable, initialized to 0}
if the symbol X is choice-free then

return X; { No new rule is produced}
else if X is a choice non-terminal then

Let X → X0|X1| . . . |XtX

b = Ai

i = i + 1
return DE-ADVICE(Xb) { No new rule is produced}

else
Let X → Y Z
M := DE-ADVICE(Y )
P := DE-ADVICE(Z)
Produce new rule N → MP {a new non-terminal is created
here}
return N

each occurrence of a PET in the recursion, an entry of the
advice string is consumed, and hence the total number of
choice points is a. So by Lemma 2 the number of rules
added by DE-ADVICE is O(a). So the total number of
rules in G is O(g + a).
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