
Grammar Based Codes� A New Class of

Universal Lossless Source Codes

John C� Kie�er and En�hui Yang

This work was supported in part by National Science Foundation Grants NCR��������� NCR�����	�	� NCR��
	��
�� and by

the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN	���������

John C� Kieer is with the Department of Electrical � Computer Engineering� University of Minnesota� Room ����� EE�CSci

Bldg�� 	�� Union Street SE� Minneapolis� MN ������ USA� E�mail� kieer�ece�umn�edu

En�hui Yang is with the Department of Electrical � Computer Engineering� University of Waterloo� Waterloo� Ontario� CA

N	L �G�� E�mail� ehyang�bbcr�uwaterloo�ca

Abstract

We investigate a type of lossless source code called a grammar based code� which� in

response to any input data string x over a �xed �nite alphabet� selects a context�free

grammar Gx representing x in the sense that x is the unique string belonging to the lan�

guage generated by Gx� Lossless compression of x takes place indirectly via compression

of the production rules of the grammar Gx� It is shown that� subject to some mild restric�

tions� a grammar based code is a universal code with respect to the family of �nite state

information sources over the �nite alphabet� Redundancy bounds for grammar based

codes are established� Reduction rules for designing grammar based codes are presented�

Index Terms� lossless coding� universal coding� redundancy� context�free grammars�

entropy� Kolmogorov complexity� Chomsky hierarchy

�

� Introduction

Grammars �especially context�free grammars	 have many applications in engineering and

computer science� Some of these applications are speech recognition �
��� Chapter �	�

image understanding �
���� p� ���	� compiler design
��� and language modeling �
����

Theorems ���� ���	� In this paper� we shall be interested in using context�free grammars

for lossless data compression� There has been some previous work of this nature� including

the papers
�
��
���
���
���
���� Two approaches have been used� In one of these

approaches �as illustrated in
��
���
���	� one �xes a context�free grammar G� known

to both encoder and decoder� such that the language generated by G contains all of the

data strings that are to be compressed� To compress a particular data string� one then

compresses the derivation tree �
��� p� ���	 showing how the given string is derived from

the start symbol of the grammar G� In the second of the two approaches �exempli�ed

by the papers
�
���
���	� a di�erent context�free grammar Gx is assigned to each data

string x� so that the language generated by Gx is fxg� If the data string x is to be

compressed� the encoder transmits codebits to the decoder that allow reconstruction of

the grammar Gx� from which the decoder infers x� This second approach is the approach

that we employ in this paper� We shall put forth a class of lossless source codes that

employ this approach that we call grammar based codes� Unlike previous workers using

the second approach� we place our results in an information�theoretic perspective� showing

how to properly design a grammar based code so that it will be a universal code with

respect to the family of �nite state information sources on a �xed �nite alphabet�

In this introduction� we wish to give the reader an informal notion of the idea of a

grammar based code� For this purpose� we do not need a precise de�nition of the concept

of context�free grammar �this will be done in the next section	� All we need to know

about a context�free grammar G here is that it furnishes us with some production rules

via which we can construct certain sequences over a �nite alphabet which form what is

called the language generated by G� denoted by L�G	�

A grammar based code consists of encoder and decoder�

� Figure � depicts the encoder structure� Letting x denote the data string that is

to be compressed� consisting of �nitely many terms chosen from some �xed �nite

�

alphabet� the grammar transform in Figure � constructs a context�free grammar Gx

satisfying the property that L�Gx	 � fxg� which tells us that xmay be inferred from

Gx because x is the unique string belonging to the language L�Gx	� The grammar

encoder in Figure � assigns to the grammar Gx a binary codeword which is denoted

B�Gx	�

� When the decoder is presented with the codeword B�Gx	� the data string x is

recovered by �rst reconstructing the grammar Gx� and then inferring x from the

production rules of Gx�

From the preceding� the reader can see that our philosophy is not to directly compress

the data string x� instead� we try to �explain� x by �nding a grammar Gx that is simple

and generates x in the sense that L�Gx	 � fxg� Since x can be recovered from Gx� we

can compress Gx instead of x� As the grammar Gx that we shall use to represent x will

be simple� we will get good compression by compressing Gx�

The main results of this paper �Theorems � and �	 tell us that� under some weak

restrictions� a grammar based code is a universal lossless source code for any �nite state

information source� We shall be able to obtain speci�c redundancy bounds for grammar

based codes with respect to �nite state information sources� Also� we shall see how to

design e�cient grammar based codes by means of reduction rules�

As a result of this paper� the code designer is a�orded with more �exibility in universal

lossless source code design� For example� for some data strings� a properly designed

grammar based code yields better compression performance than that a�orded by the

Lempel�Ziv universal data compression algorithm
����

Notation and Terminology� We explain the following notations and terminologies

used throughout the paper�

� jSj denotes the cardinality of a �nite set S�

� jxj denotes the length of a string x of �nite length�

� dxe denotes the smallest positive integer greater than or equal to the real number

x�

� S� denotes the set of all strings of �nite length whose entries come from the �nite

set S� including the empty string� We represent each nonempty string in S� mul�

tiplicatively and uniquely as x�x� � � �xn� where n is the length of the string and

x�� x�� � � � � xn � S� we write the empty string in S� as �S �

� If x and y are elements of S�� we de�ne the product xy to be the element of S� such

that

�i� If x � �S � then xy � y� if y � �S � then xy � x�

�ii� If x �� �S and y �� �S � then

xy � x�x� � � �xny�y� � � � ym�

where x�x� � � � xn and y�y� � � � ym are the unique multiplicative representations

of x and y� respectively�

The multiplication operation �x� y	 � xy on S� is associative� Therefore� given

s�� s�� � � � � sj � S�� the product s�s� � � � sj is an unambiguously de�ned element of

S�� �The set S�� with the multiplication we have de�ned� is called a multiplicative

monoid�	

� A parsing of a string u � S� is any sequence �u�� u�� � � � � um	 in which u�� u�� � � � � um

are strings in S� such that u�u� � � �um � u�

� S� denotes the set S� with the empty string �S removed�

� For each positive integer n� Sn denotes the set of all strings in S� of length n�

� All logarithms are to base two�

� Admissible Grammars

In this section� we introduce a subclass of the class of all context�free grammars called

the class of admissible grammars� For each admissible grammar G� it is guaranteed that

L�G	 � fxg ����	

�

will hold for some string x� A simple test is given� which will allow us to determine

whether or not a grammar is admissible �Theorem �	� We will also present an algorithm

for the calculation of the string x in ����	� from a given admissible grammar G �Theorem

	�

A production rule is an expression of the form

A� � ����	

where A � S and � � S� for some �nite set S� The left member �resp�� right member	

of the production rule ����	 is de�ned to be A �resp�� �	� Following
���� a context�free

grammar is a quadruple G � �V� T� P� S	 in which

� V is a �nite nonempty set whose elements shall be called variables�

� T is a �nite nonempty set� disjoint from V � whose elements shall be called terminal

symbols�

� P is a �nite set of production rules whose left members come from V and whose

right members come from �V � T 	�� We assume that for each A � V � there is at

least one production rule in P whose left member is A�

� S is a special variable in V called the start symbol�

We adopt the following notational conventions� We shall denote the set of variables� the

set of terminal symbols� and the set of production rules for a context�free grammar G by

V �G	� T �G	� P �G	� respectively� When a variable in V �G	 is denoted �S�� that will always

mean that the variable is the start symbol� Upper case symbols A�B�C�D� � � � �with or

without subscripts	 are used to denote variables� and lower case symbols a� b� c� d� � � � �with

or without subscripts	 are used to denote terminal symbols� Given a context�free grammar

G� and a variable A � V �G	� there may exist a unique production rule in P �G	 whose left

member is A � we shall refer to this production rule as �the A production rule��

Let G be a context�free grammar� If � and � are strings in �V �G	 � T �G		��

� We write �
G
� � if there are strings ��� �� and a production rule A� � of G such

that ���� A� ��	 is a parsing of � and ���� �� ��	 is a parsing of �� �In other words�

�

we obtain � from � by replacing some variable in � with the right member of a

production rule whose left member is that variable�	

� We write �
G
� � if there exists a sequence of strings ��� ��� � � � � �k such that

� � ��
G
� ��� ��

G
� ��� � � � � �k��

G
� �k � �

The language L�G	 generated by G is de�ned by�

L�G	
�
� fu � T � � S

G
� ug

We are now ready to de�ne the notion of an admissible grammar� We de�ne a context�

free grammar G to be admissible if all of the following properties hold�

� G is deterministic� This means that for each variable A � V �G	� there is exactly

one production rule in P �G	 whose left member is A�

� The empty string is not the right member of any production rule in P �G	�

� L�G	 is nonempty�

� G has no useless symbols� By this� we mean that for each symbol Y � V �G	�T �G	�

Y �� S� there exist �nitely many strings ��� ��� � � � � �n such that at least one of the

strings contains Y and

S � ��
G
� ��� ��

G
� ��� � � � � �n��

G
� �n � L�G	

It can be seen that for any deterministic grammar G� the language L�G	 is either

empty or consists of exactly one string� Therefore� if G is an admissible grammar� there

exists a unique string x � T �G	� such that L�G	 � fxg� This string x shall be called the

data string represented by G� We shall also say that G represents x�

When we want to specify an admissible grammar G� we need only list the production

rules of G� because V �G	� T �G	� and the start symbol S can be uniquely inferred from

the production rules� The set of variables V �G	 will consist of the left members of the

�

production rules� the set of terminal symbols T �G	 will consist of the symbols which are

not variables and which appear in the right members of the production rules� and the

start symbol S is the unique variable which does not appear in the right members of the

production rules�

Example �� Suppose that a grammar G �which will be shown to be admissible in

Example �	 has production rules�

A� � aA�A�A�

A� � ab

A� � A�b

A� � A�b

Looking at the left members of the production rules� we see that V �G	 � fA�� A�� A�� A�g�

Of these four variables� A� is the only one not appearing in the right members� and so the

start symbol of the grammarG is S � A�� Striking out A�� A�� A� from the right members�

the remaining symbols give us T �G	 � fa� bg� It will be determined in Example that

the data string represented by G is aababbabbb� This means that L�G	 � faababbabbbg�

Let S be a �nite set� An endomorphism on S� is a mapping f from S� into itself such

that the following two conditions hold�

� f��S 	 � �S

� f�u�u�	 � f�u�	f�u�	� u�� u� � S�

Notice that an endomorphism f on S� is uniquely determined once f�u	 � S� has been

speci�ed for every u � S�

Given an endomorphism f on S�� we can de�ne a family of endomorphisms ffk � k �

�� �� �� � � �g on S� by�

f� � identity map

f� � f

fk�u	 � f�fk���u		� k � �� u � S�

�

Following
���
���� an L�system� is a triple �S� f� u	 in which

� S is a �nite set�

� f is an endomorphism on S��

� u � S��

The �xed point u� �if it exists	 of an L�system �S� f� u	 is the unique string u� such

that

� u� � ffk�u	 � k � �� �� �� � � �g

� f�u�	 � u�

Suppose G is a deterministic context�free grammar in which the empty string is not

the right member of any production rule� We de�ne fG to be the endomorphism on

�V �G	 � T �G		� such that

� fG�a	 � a� a � T �G	

� If A� � is a production rule of G� then fG�A	 � ��

We have recounted standard background material on context�free grammars and L�

systems� We now present new material which will allow us to reconstruct a data string

from an admissible grammar which represents it�

The following theorem indicates why L�systems are important to us� �The proof� which

is almost self�evident� is omitted�	

Theorem � Let G be an admissible grammar� Then the data string x represented by G

can be characterized as the �xed point of the L�system �V �G	 � T �G	� fG� S	�

Derivation Graphs� Let G be a deterministic context�free grammar for which the

empty string is not the right member of any production rule� We can associate with

G a �nite directed graph called the derivation graph of G� There are jV �G	 � T �G	j

vertices in the derivation graph of G� Each vertex of the derivation graph is labelled with

�sometimes referred to as a D�L system

�

a symbol from V �G	 � T �G	� with no two vertices carrying the same label� There are

jT �G	j terminal vertices in the derivation graph� whose labels come from T �G	� whereas

the labels on the nonterminal vertices come from V �G	� If a nonterminal vertex is labelled

by a variable A � V �G	� and if A� Y�Y� � � �Yk is the A production rule� then there are k

edges emanating from the vertex� the labels on the vertices at which these edges terminate

are Y�� Y�� � � � � Yk� respectively� We shall refer to a vertex of the derivation graph of G

labelled by Y � V �G	 � T �G	 as the �Y vertex��

We can use the derivation graph of a grammar G to deduce certain properties of the

grammar� Before we do that� we discuss some characteristics of directed graphs� A path

in a directed graph is a �nite or in�nite sequence feig of edges of the graph� such that for

every pair of consecutive edges �ei� ei��	 from the sequence� the edge ei terminates at the

vertex where edge ei�� begins� A directed graph is said to be rooted at one of its vertices

v if for each vertex v� �� v of the graph� there is a path whose �rst edge begins at v and

whose last edge ends at v�� A path in a directed graph which begins and ends at the same

vertex is called a cycle� A directed graph with no cycles is called an acyclic graph�

The following theorem� proved in Appendix A� gives us some simple conditions to

check to see whether a grammar is admissible�

Theorem � Let G be a deterministic context�free grammar such that the empty string is

not the right member of any production rule of G� Then the following three statements

are equivalent�

�i� G is admissible�

�ii� The derivation graph of G is acyclic and is rooted at the S vertex�

�iii� f
jV �G�j
G �S	 � T �G	� and each symbol in V �G	 � T �G	 is an entry of at least one of

the strings f iG�S	� i � �� �� � � � � jV �G	j�

Example �� The grammar G in Example � has the following derivation graph�

�

� ��

� �

�

�

�

���

A�

a A� A� A�

b

Notice that the graph is acyclic� and is rooted at the vertex labelled with the start symbol

S � A� � Theorem � allows us to conclude that the grammar G is admissible�

The following theorem� which follows from Theorem �� gives us an algorithm for com�

puting the data string represented by an admissible grammar�

Theorem � Let G be an admissible grammar� Then the data string x represented by G

is computed by doing the calculation

x � f
jV �G�j
G �S	 ���	

Example �� Let G again be the grammar in Example �� From Example �� we know

that G is admissible� Since jV �G	j � �� Theorem tells us that the data string represented

by G is f	G�A�	� which we compute as follows�

fG�A�	 � aA�A�A�

f�G�A�	 � aabA�bA�b

f�G�A�	 � aababbA�bb

f	G�A�	 � aababbabbb

Notice that condition �iii	 of Theorem � holds� �Each of the symbols A�� A�� A�� a� b

appears at least once in the strings computed above� also� f	G�S	 is a string in T �G	��	

��

This gives us another veri�cation that G is admissible�

The following theorem generalizes Theorem � and follows easily from Theorem � in

combination with Lemma � of Appendix A� It shall be useful to us in subsequent sections

of the paper�

Theorem � Let G be an admissible context�free grammar� Let u be any string in �V �G	�

T �G		�� Then� the L�system �V �G	 � T �G	� fG� u	 has a �xed point u�� and u� � T �G	��

The �xed point u� is computable via the formula

u� � f
jV �G�j
G �u	

A useful endomorphism� Let G be an admissible grammar� In view of Theorem ��

we may de�ne a mapping f�G from �V �G	� T �G		� into itself such that� if u is any string

in �V �G	 � T �G		�� then f�G �u	 is the �xed point of the L�system �V �G	 � T �G	� fG� u	�

The following result gives us a number of properties of the mapping f�G that shall be

needed later on�

Theorem � Let G be an admissible grammar� Then�

�i� f�G is an endomorphism on �V �G	 � T �G		��

�ii� f�G �u	 � T �G	� for each u � �V �G	 � T �G		��

�iii� For each u � �V �G	 � T �G		��

f�G �u	 � f
jV �G�j
G �u	

�iv� If A� � is a production rule of G� then

f�G �A	 � f�G ��	

Proof of Theorem 	� Properties �i	��ii	 are trivially seen to be true� Property �iii	

is a consequence of Theorem �� Property �iv	 follows from THE fact that if A � � is

a production rule� then the sequence ff iG��	 � i � �g is obtained by throwing away the

��

�rst term of the sequence ff iG�A	 � i � �g� whence the �xed points arising from these

sequences are the same�

� Grammar Transforms

The grammar transform in Figure � is the most important component of a grammar based

code� Formally� a grammar transform shall be de�ned as a mapping which assigns to each

data string a grammar which represents the string� This section is devoted to the study

of grammar transforms� We shall focus on two general classes of grammar transforms�

the asympotically compact grammar transforms �Section ��	 and the irreducible grammar

transforms �Section ��	�

For the rest of the paper� we let A denote an arbitrary �nite set of size at least two�

the set A shall serve as the alphabet from which our data strings are to be drawn� We

shall call a string in A� an A�string� We �x a countably in�nite set of symbols

fA�� A�� A�� A�� � � �g ���	

from which we will select the variables to be used in forming the grammars to be employed

in a grammar transform� We assume that each of the symbols in ���	 is not a member

of the alphabet A�

We de�ne G�A	 to be the set of all grammars G satisfying the following properties�

�i� G is admissible�

�ii� T �G	 	 A�

�iii� The start symbol of G is A��

�iv� V �G	 � fA�� A�� A�� � � � � AjV �G�j��g�

�v� If we list the variables in V �G	 in order of their �rst left�to�right appearance in the

string

f�G�A�	f
�
G�A�	f

�
G�A�	 � � � f

jV �G�j��
G �A�	 ���	

��

then we obtain the list

A�� A�� A�� � � � � AjV �G�j��

Discussion� For the purposes of this paper� the function of a grammar is to represent

a data string� From this point of view� it makes no di�erence what symbols are used as

the �names� for the variables in V �G	� Indeed� in reconstructing a data string from a

grammar G which represents it� the variables in V �G	 are �dummy� variables which are

substituted for in the reconstruction process� By means of property �v	� we have required

that the variables in V �G	 be named in a �xed way� according to a �canonical ordering�

of the variables in V �G	� Our canonical ordering is the unique ordering induced by the

depth��rst search through the vertices of the derivation graph of G in which the daughter

vertices of a vertex are visited in order of the left�to�right appearance of terms in the right

member of a production rule of G� It is precisely this ordering that will allow the grammar

decoder �implicit in the proof of Theorem � in Section �	 to determine the name of each

new variable that must be decoded �if the decoder has previously dealt with variables

A�� A�� � � � � Am� then the next new variable that will appear in the decoding process will

be Am��	�

Given any grammar G which is not in G�A	� but which satis�es properties �i	 and �ii	�

one can re�name the variables in V �G	 in a unique way so that properties �iii	��v	 will also

be satis�ed� This gives us a new grammar� denoted by
G�� which is a member of G�A	

and which represents the same data string as G� �If a grammar G is already a member

of G�A	� we de�ne
G� � G�	 The grammar
G� shall be called the canonical form of the

grammar G�

Example
� Consider the admissible grammar whose production rules are

S � BaA

A � aC

B � Db

C � bB

D � ab

�

One sees that

f�G�S	 � S

f�G�S	 � BaA

f�G�S	 � DbaaC

f�G�S	 � abbaabB

f	G�S	 � abbaabDb

Multiplying these strings together as in ���	� one obtains the string

SBaADbaaCabbaabBabbaabDb

Listing the variables in V �G	 in order of their �rst left�to�right appearance in this string�

the following list results�

S�B�A�D�C

Employing this list� we re�name the variables according to the prescription

S � A�

B � A�

A � A�

D � A�

C � A	

thereby obtaining the grammar
G� in G�fa� bg	 whose production rules are

A� � A�aA�

A� � A�b

A� � aA	

A� � ab

��

A	 � bA� ���	

The grammars G and
G� both represent the data string abbaababb�

A grammar transform is a mapping from A� into G�A	 such that the grammar Gx �

G�A	 assigned to each A�string x represents x� We adopt the notational convention of

writing x� Gx to denote a grammar transform� In this notation� x is a generic variable

denoting an arbitrary A�string� and Gx is the grammar in G�A	 assigned to x by the

grammar transform�

De	nition� In subsequent sections� we shall occasionally make use of a set of gram�

mars G��A	 which is a proper subset of G�A	� The set G��A	 consists of all grammars

G � G�A	 satisfying the property that f�G �A	 �� f�G �B	 whenever A�B are distinct vari�

ables from V �G	� At this point� it is not clear to the reader why the smaller set of

grammars G��A	 is needed� This will become clear in Lemma � of Appendix B� where use

of a grammar G � G��A	 to represent an A�string x will allow us to set up a one�to�one

correspondence between certain entries of the right members of the production rules of G

and substrings of x forming the entries of a parsing of x� this correspondence will allow

us to relate the encoding of the right members of G �as described in Section �	 to the

left�to�right encoding of x in the usual manner of sequential encoders�

��� Asymptotically Compact Grammar Transforms

If G is any context�free grammar� let jGj denote the total length of the right members of

the production rules of G� We say that a grammar transform x � Gx is asymptotically

compact if both of the following properties hold�

�i� For each A�string x� the grammar Gx belongs to G��A	�

�ii� limn��maxx�An
jGxj
jxj

� �

Asymptotically compact grammar transforms are important for the following reason�

Employing an asymptotically compact grammar transform as the grammar transform in

Figure � yields a grammar based code which is universal �Theorem �	� We present here

two examples of asymptotically compact grammar transforms� the Lempel�Ziv grammar

transform and the bisection grammar transform�

��

����� Lempel
Ziv Grammar Transform

Let x � x�x� � � �xn be an A�string� Let �u�� u�� � � � � ut	 be the Lempel�Ziv parsing of x� by

which we mean the parsing of x established in the paper
��� and used in the ���� version

of the Lempel�Ziv data compression algorithm
���� Let Slz�x	 be the set of substrings of

x de�ned by

Slz�x	
�
� fxg � fu�� u�� � � � � utg

For each u � Slz�x	� let �su� au	 be the parsing of u in which au � A� and let Au be a

variable uniquely assigned to u� Let Glz
x
be the admissible grammar such that

� The set of variables and the set of terminal symbols are given by

V �Glz
x
	 � fAu � u � Slz�x	g

T �Glz
x
	 � fau � u � Slz�x	g

� The start symbol is Ax and the Ax production rule is

Ax � Au�Au� � � �Aut

� For each u � Slz�x	 other than x� the Au production rule is

Au � Asuau

The Lempel�Ziv grammar transform is the mapping x�
Glz
x
� fromA� into G�A	� For

the Lempel�Ziv parsing �u�� � � � � ut	 of an A�string x� let us write t � t�x	 to emphasize

the dependence of the number of phrases on x� It is well�known that

max
x�An

t�x	 � O

�
n

log n

�
���	

from which it follows that the Lempel�Ziv grammar transform is asymptotically compact�

��

Example 	� The Lempel�Ziv parsing of the data string x � ������������ is ��� �� ��� ���

���� ���	� The grammar Glz
x

has the production rules

Ax � A�A�A��A��A���A���

A�� � A��

A�� � A��

A��� � A���

A��� � A���

A� � �

A� � �

The grammar
Glz
x
� can be veri�ed by the reader to be the grammar in G��f�� �g	 with

the production rules

A� � A�A�A�A	A
A�

A� � �

A� � �

A� � A��

A	 � A��

A
 � A��

A� � A��

Discussion� The reader of
��� will �nd notions called producibility and reproducibility

introduced there that allow one to describe a recursive copying process for certain parsings

of a data string �not just the parsing considered above	� For each such parsing� it is easy

to construct a grammar which embodies this copying process and represents the given

data string� the grammar we built in Example � was just one instance of this paradigm�

��

����� Bisection Grammar Transform

Let x � x�x� � � �xn be an arbitrary A�string� Let Sbis�x	 be the following set of substrings

of x�

Sbis�x	
�
� fxg � f�xi� xi��� � � � � xj	 � �i
 �	��j
 i� �	 � log�j
 i� �	 are integersg

For each u � Sbis�x	� let Au be a variable uniquely assigned to u� For each u � Sbis�x	

of even length� let �s�u�L	� s�u�R		 be the parsing of u in which the strings s�u�L	 and

s�u�R	 are of equal length� Let Gbis
x

be the admissible grammar such that

� The set of variables and the set of terminal symbols are given by

V �Gbis
x
	 � fAu � u � Sbis�x	g

T �Gbis
x
	 � fu � Sbis�x	 � juj � �g

� The start symbol is Ax�

� If u � Sbis�x	 and juj � �� the Au production rule is

Au � u

� If u � Sbis�x	 and log juj is a positive integer� the Au production rule is

Au � As�u�L�As�u�R�

� If u � Sbis�x	 and log juj is not an integer �which means that u � x	� the Au

production rule is

Au � Au�Au� � � �Aut�

where �u�� u�� � � � � ut	 is the unique parsing of x into strings in Sbis�x	 for which

jxj � ju�j � ju�j � � � � � jutj�

The bisection grammar transform is the mapping x�
Gbis
x
� fromA� into G�A	� In the

paper
��� it is shown that the bisection grammar transform is asymptotically compact�

��

and a lossless compression algorithm with good redundancy properties is developed based

upon the bisection grammar transform�

Example �� For the data string x � �������� we have

Sbis�x	 � fx� ����� ��� �� ��� �g�

and the production rules of the grammar Gbis
x

are�

Ax � A����A��A�

A���� � A��A��

A�� � A�A�

A�� � A�A�

A� � �

A� � �

We then see that the production rules of
Gbis
x
� are given by

A� � A�A�A�

A� � A	A�

A� � A�A

A� � �

A	 � A�A�

A
 � �

��� Irreducible Grammar Transforms

We de�ne a context�free grammar G to be irreducible if the following four properties are

satis�ed�

�a��� G is admissible�

�a��� If v�� v� are distinct variables in V �G	� then f�G �v�	 �� f�G �v�	�

��

�a��� Every variable in V �G	 other than the start symbol appears at least twice as an

entry in the right members of the production rules of the grammar G�

�a��� There does not exist any pair Y�� Y� of symbols in V �G	�T �G	 such that the string

Y�Y� appears more than once in nonoverlapping positions as a substring of the right

members of the production rules for G�

Example �� The admissible grammar with production rules

S � ACBBEA

A � DD�

B � C��

C � �D

D � �E

E � �� ���	

can be veri�ed to be an irreducible grammar�

A grammar transform x � Gx is de�ned to be an irreducible grammar transform if

each grammar Gx is irreducible� In principle� it is easy to obtain irreducible grammar

transforms� One can start with any grammar transform x� Gx and exploit the presence

of matching substrings in the right members of the production rules of each Gx to reduce

Gx to an irreducible grammar representing x in �nitely many reduction steps� A wealth of

di�erent irreducible grammar transforms are obtained by doing the reductions in di�erent

ways� In Section �� we develop a systematic approach for reducing grammars to irreducible

grammars� and present examples of irreducible grammar transforms which have yielded

good performance in compression experiments on real data�

� Entropy and Coding of Grammars

In this section� we de�ne the entropy H�G	 of a grammar G � G�A	� and present a result

�Theorem �	 stating that we can losslessly encode each G using approximately H�G	

codebits�

��

First� we need to de�ne the concept of unnormalized entropy� which will be needed in

this section and in subsequent parts of the paper� Suppose u is either a string u�u� � � � un

in a multiplicative monoid or a parsing �u�� u�� � � � � un	 of a string in a multiplicative

monoid� For each s � fu�� u�� � � � � ung� let m�sju	 be the number of entries of u which are

equal to s�

m�sju	 � jf� � i � n � ui � sgj

We de�ne the unnormalized entropy of u to be the following nonnegative real number

H��u	�

H��u	
�
�

nX
i��

log

�
n

m�uiju	

�

Let G be an arbitrary grammar in G�A	� recalling the notation we introduced in

Section � we have V �G	 � fA�� A�� A�� � � � � AjV �G�j��g� We de�ne �G to be the following

string of length jGj�

�G
�
� fG�A�	fG�A�	fG�A�	 � � � fG�AjV �G�j��	 ����	

Notice that the string �G is simply the product of the right members of the production

rules in P �G	� We de�ne 	G to be the string obtained from �G by removing from �G

the �rst left�to�right appearance of each variable in fA�� � � � � AjV �G�j��g� We de�ne the

entropy H�G	 of the grammar G to be the number

H�G	
�
� H��	G	

Theorem � There is a one�to�one mapping B � G�A	� f�� �g� such that

� If G� and G� are distinct grammars in G�A	� then the binary codeword B�G�	 is

not a pre�x of the binary codeword B�G�	�

� For each G � G�A	� the length of the codeword B�G	 satis�es

jB�G	j � jAj� �jGj � dH�G	e ����	

��

Proof� Given the grammar G � G�A	� the binary codeword B�G	 has a parsing

�B�� B�� B�� B	� B
� B�	 in which

�i� B� has length jV �G	j and indicates what V �G	 is� �Speci�cally�B� consists of jV �G	j

� zeroes followed by a one�	

�ii� B� has length jAj and tells what T �G	 is� �For each element of A� transmit a codebit

to indicate whether or not that element is in T �G	�	

�iii� B� has length jGj and indicates the frequency with which each symbol in �V �G	 �

T �G		
 fSg appears in the right members of the production rules of G� �Each

frequency is given a unary representation as in �i	�	

�iv� B	 has length jGj and indicates the lengths of the right members of the production

rules of G�

�v� B
 has length jGj and indicates which entries of �G are variables in V �G	 appearing

for the �rst time as �G is scanned from left to right�

�vi� B� has length at most dH�G	e and indicates what 	G is� The well�known enumer�

ative encoding technique
�� is used to obtain B� from 	G� This technique exploits

the frequencies of symbols in 	G learned from B� to encode 	G into a codeword of

length equal to the smallest integer greater than or equal to the logarithm of the size

of the type class of 	G �see
�� or the beginning of Appendix B	� From the de�nition

of H�G	 and a standard bound on the size of a type class �
��� Lemma ��	� it is

clear that the codeword length can be no more than dH�G	e�

From 	G and the information conveyed by B
� the string �G can be reconstructed� since

new variables in �G are numbered consecutively as they �rst appear� From �G and the

information conveyed by B	� the right members of the production rules in G can be

obtained� completing the reconstruction of G from B�G	� The total length of the strings

B�� B�� � � � � B� is at most the right side of ����	�

Example � Consider the grammar G � G�A	 with the production rules given in ���	�

We have

�G � A�aA�A�baA	abbA�

��

	G � abaabbA�

H�G	 � H��	G	 � log
�
�

�
� log

�
�

�
� log � � �����

Substituting H�G	� jGj � ��� and jAj � � into ����	� we see that the codeword B�G	 is

of length no more than ���

� Coding Theorems

We embark upon the main section of the paper� A formal de�nition of the concept of

grammar based code is given� Speci�c redundancy bounds for a grammar based code with

respect to families of �nite state information sources �Theorems � and �	 are obtained�

Information sources� An alphabet A information source is de�ned to be any map�

ping
 � A� �
�� �� such that

��A	 � �

�x	 �
P

a�A
�xa	� x � A�

Finite State Sources� Let k be a positive integer� An alphabet A information source

 is called a k�th order �nite state source if there is a set S of cardinality k� a symbol

s� � S� and nonnegative real numbers fp�s� xjs�	 � s� s� � S� x � Ag such that both of the

following hold�

X
s�x

p�s� xjs�	 � �� s� � S ���	

�x�x� � � �xn	 �
X

s��s������sn�S

nY
i��

p�si� xijsi��	� x�x� � � �xn � A
� ����	

We let �k
fs�A	 denote the family of all alphabet A k�th order �nite state sources� We call

members of the set �k�k
fs�A	 �nite state sources�

Remark� If in addition to ���	�����	� we require that for each �x� s�	� the quantity

p�s� xjs�	 is nonvanishing for just one s� then the �nite state source
 is said to be uni�lar�

We point out that our de�nition of �nite state source includes sources which are not

uni�lar as well as those which are uni�lar�

�

Stationary Sources� We de�ne �sta�A	 to be the set of all alphabet A information

sources
 for which

�x	 �
X
a�A

�ax	� x � A�

The members of �sta�A	 are called stationary sources�

Lossless source codes� We de�ne an alphabet A lossless source code to be a pair

� � ���� �	 in which

�i� �� is a mapping �called the encoder of �	 which maps each A�string x into a codeword

���x	 � f�� �g�� and � is the mapping �called the decoder of �	 which maps ���x	

back into x� and

�ii� for each n � �� �� � � �� and each distinct pair of strings x��x� in An� the codeword

���x�	 is not a pre�x of the codeword ���x�	�

An alphabet A lossless source code � is de�ned to be an alphabet A grammar based code

if there is a grammar transform x� Gx such that

���x	 � B�Gx	� x � A�

The grammar transform in this de�nition shall be called the grammar transform under�

lying the grammar based code �� We isolate two classes of grammar based codes� We let

Cac�A	 be the class of all alphabet A grammar based codes for which the underlying gram�

mar transform is asymptotically compact� We let Cirr�A	 denote the class of all alphabet

A grammar based codes for which the underlying grammar transform is irreducible�

Redundancy Results� The type of redundancy we employ in this paper is maximal

pointwise redundancy� a notion of redundancy that has been studied previously
���
���

Let � be a family of alphabet A information sources� Let � be an alphabet A lossless

source code� The n�th order maximal pointwise redundancy of � with respect to the

family of sources � is the number de�ned by

Redn����	
�
� n�� max

x�An
sup
��

j���x	j� log
�x	� ����	

��

We present two results concerning the asymptotic behavior of the maximal pointwise

redundancy for alphabet A grammar based codes with respect to each family of sources

�k
fs�A	 �k � �	� These are the main results of this paper�

Theorem � Let � be a grammar based code from the class Cac�A	� and let x� Gx be the

grammar transform underlying �� Let f�ng be a sequence of positive numbers converging

to zero such that

max
x�An

jGxj

jxj
� O��n	

Then� for every positive integer k�

Redn����
k
fs�A		 � O����n		 ����	

where � is the function de�ned by

��x	
�
� x log���x	� x � �

Theorem The class of codes Cirr�A	 is a subset of the class of codes Cac�A	� Further�

more� for every positive integer k�

max
��Cirr�A�

Redn����
k
fs�A		 � O

�
log log n

log n

�

Remarks�

�i� Theorem � tells us that the maximal pointwise redundancies asymptotically decay

to zero for each code in Cac�A	� the speed of decay is dependent upon the code�

Theorem � tells us that the maximal pointwise redundancies decay to zero uniformly

over the class of codes Cirr�A	� with the uniform speed of decay at least as fast as

a constant times log log n� log n�

�ii� An alphabet A lossless source code � is said to be a weakly minimax universal code

�� with respect to a family of alphabet A information sources � if

lim
n��

n��
X
x�An

�j���x	j� log
�x		
�x	 � ��
 � �

��

Theorem � tells us that every code in Cac�A	 is a weakly minimax universal code

with respect to the family of sources �k�k
fs�A	� It is then automatic that the codes

in Cac�A	 are each weakly minimax with respect to the family of sources �sta�A	

�easily established using Markov approximations of stationary sources
��	�

�iii� An alphabet A lossless source code � is said to be a minimax universal code
�� with

respect to a family of alphabet A information sources � if

lim
n��

n�� sup
��

X
x�An

�j���x	j� log
�x		
�x	 � �

Theorem � tells us that every code in Cac�A	 is a minimax universal code with

respect to each family of sources �k
fs�A	� k � ��

�iv� J� Ziv and A� Lempel de�ne an individual sequence to be an in�nite sequence

�x�� x�� x�� � � �	 each of whose entries xi belongs to the alphabet A� These authors

���
��� have put forth a notion of what it means for an alphabet A lossless source

code to be a universal code with respect to the family of individual sequences� �Leav�

ing aside the technical details� we point out that Ziv and Lempel de�ne a class of

lossless codes called �nite state codes� and de�ne a code to be universal if it encodes

each individual sequence asymptotically as well as each �nite state code�	 It can be

shown that if an alphabet A lossless source code � satis�es

lim sup
n��

�
�n�� sup

��k
fs
�A�

�j���x�x� � � �xn	j� log
�x�x� � � � xn		

�
� � �

for every k � � and every individual sequence �x�� x�� � � �	� then � is a universal

code with respect to the family of individual sequences� This fact� together with

Theorem �� allows us to conclude that every code in Cac�A	 is a universal code with

respect to the family of individual sequences�

The following two lemmas� together with Theorem �� immediately imply Theorems �

and �� They are proved in Appendix B�

Lemma � Let x be any A�string� and let G be any grammar in G��A	 which represents

��

x� Then� for every positive integer k� and every
 � �k
fs�A	�

H�G	 �
 log
�x	 � jGj�� � log k	 � �jxj �

�
jGj
 jV �G	j � �

jxj

�
����	

Lemma � Let x be any A�string of length at least jAj�	� Then

jGj

jxj
�
jAj

jxj
�

�� log jAj

log jxj
 � log jAj
 �
����	

for any irreducible grammar G which represents x�

In concluding this section� we remark that our grammar based encoding technique and

Theorems � and � based on it are predicated on the implicit assumption that a data string

x is �rst batch processed before formation of a grammar representing x� only after the

batch processing and grammar formation can the grammar then be encoded� An approach

involving less delay is to form and encode production rules of a grammar on the �y as we

sequentially process the data from left to right� with the grammar encoding terminating

simultaneously with the sequential processing of the last data sample� The Improved

Sequential Algorithm of
��� adopts this approach� necessitating a di�erent method for

encoding grammars than used in Section �� as well as new proofs of the universal coding

theorems�

� Reduction Rules

We present �ve reduction rules� such that if an admissible grammar G is not irreducible�

there will be at least one of the �ve reduction rules which can be applied to the grammar

G� any of these rules applicable to G will produce a new admissible grammar G� satisfying

the properties

�i� G� represents the same data string that is represented by G�

�ii� G� is closer to being irreducible than G �in a sense made clear in the discussion just

prior to Section ���	�

��

Reduction Rule �� Let G be an admissible grammar� Let A be a variable of G that

appears only once in the right members of the production rules of G� Let B � �A� be

the unique production rule in which A appears in the right member� Let A � � be the

A production rule of G� Simultaneously do the following to the set of production rules of

G�

� Delete the production rule A� � from the production rules of G�

� Replace the production rule B � �A� with the production rule B � ����

Let P � be the resulting smaller set of production rules� De�ne G� to be the unique

admissible grammar whose set of production rules is P ��

Reduction Rule �� Let G be an admissible grammar� Suppose there is a production

rule

A� �������� ����	

where j�j � �� Let B be a symbol which does not belong to V �G	 � T �G	� Perform the

following operations simultaneously to P �G	�

� Replace the rule ����	 with the rule

A� ��B��B��

� Append the rule B � ��

Let P � be the resulting set of production rules� De�ne G� to be the unique admissible

grammar whose set of production rules is P ��

Reduction Rule �� Let G be an admissible grammar� Suppose there are two distinct

production rules of form

A � ����� �����	

B � ����	 �����	

where � is of length at least two� either �� or �� is not the empty string� and either �� or

�	 is not the empty string� Let C be a symbol not appearing in V �G	 � T �G	� Perform

the following operations simultaneously to P �G	�

��

� Replace the rule �����	 with the rule

A� ��C��

� Replace the rule �����	 with the rule

B � ��C�	

� Append the rule

C � �

Let P � be the resulting set of production rules� De�ne G� to be the unique admissible

grammar whose set of production rules is P ��

Reduction Rule �� Let G be an admissible grammar� Suppose there are two distinct

production rules of the form

A � ����� �����	

B � �

where � is of length at least two� and either �� or �� is not the empty string� In P �G	�

replace the production rule �����	 with the production rule

A � ��B��

Let P � be the resulting set of production rules� De�ne G� to be the unique admissible

grammar whose set of production rules is P ��

Reduction Rule �� Let G � �V� T� P� S	 be an admissible grammar� Suppose there

exist distinct variables A�B � V such that f�G �A	 � f�G �B	� Let P � be the set of

production rules that results by substituting A for each appearance of B in the right

members of the production rules in P � Let U be the set of those variables in V which

are useless symbols with respect to the grammar �V� T� P �� S	� �Note that U is nonempty�

because B � U �	 Let P � be the set of production rules obtained by removing from P �

��

all production rules whose left member is in U � De�ne G� to be the unique admissible

grammar whose set of production rules is P ��

Example �� Consider the admissible grammar G whose production rules are

S � AB

A � CD

B � aE

C � ab

D � cd

E � bD

Notice that f�G �A	 � f�G �B	 � abcd� Replace every B on the right with A�

S � AA

A � CD

B � aE

C � ab

D � cd

E � bD ����	

Consider the grammar G� in which V �G�	 � fS�A�B�C�D�Eg� T �G�	 � fa� b� c� dg� and

P �G�	 is the set of production rules listed in ����	� Let us compute the members of

V �G�	 which are useless symbols with respect to the grammar G��

We have�

f�G��S	 � S

f�G��S	 � AA

f�G��S	 � CDCD

fnG��S	 � abcdabcd� n � �����	

�

The useless members of V �G�	 are the members of V �G�	 not appearing in the right hand

sides of the equations in �����	� These are the variables B and E� Removing the two

production rules from the list ����	 which have B and E as left members� we obtain the

set of production rules

S � AA

A � CD

C � ab

D � cd

which uniquely de�nes an admissible grammar G�� The reader can verify that the gram�

mars G and G� both represent the data string abcdabcd�

Example ��� Consider the data string

x � ��������������������������������

We will obtain an irreducible grammar representing x in �nitely many reduction steps�

where on each reduction step� one of the Reduction Rules ��� is used� We start with the

list of production rules consisting of just one rule�

S � x

Applying Reduction Rule �� we get the list of production rules�

S � A������������������A

A � �������

We apply Reduction Rule � again� getting the list of production rules

S � A����BB��A

A � �������

�

B � ������

Applying Reduction Rule � we obtain�

S � ACBB��A

A � �������

B � C��

C � ����

The following is then obtained via application of Reduction Rule � followed by Reduction

Rule ��

S � ACBB��A

A � DD�

B � C��

C � �D

D � ���

Applying Reduction Rule at this point yields the list of production rules ���	� which

is seen to de�ne an irreducible grammar� This grammar will automatically represent the

string x�

Discussion� Notice that in the preceding example� we started with a grammar repre�

senting our data string and obtained an irreducible grammar representing the same string

via �nitely many reduction steps� in which each reduction step involved exactly one of

the Reduction Rules ���� How can we be sure that it is always possible to do this� To

answer this question� de�ne

C�G	
�
� �jGj
 jV �G	j

for any admissible grammar G� The number C�G	 is a positive integer for any admissible

grammar G� Also� the reader can check that if the grammar G� is obtained from the

grammar G by applying one of the Reduction Rules ���� then C�G�	 � C�G	� From these

facts� it follows that if we start with a grammarG which is not irreducible� then in at most

�

C�G	
� reduction steps �in which each reduction step involves the application of exactly

one of the Reduction Rules ���	� we will arrive at an irreducible grammar representing

the same data string as G� It does not matter how the reductions are done�they will

always lead to an irreducible grammar in �nitely many steps�

Remark� It is possible to de�ne more reduction rules than Reduction Rules ���� For

example� if the right members of the production rules of a grammar G contain nonover�

lapping substrings � �� �� for which f�G ��	 � f�G ���	� one can reduce G by replacing

���� with a new variable A� while introducing a new production rule �either A � � or

A� ��	� This new reduction rule is somewhat di�cult to implement in practice� however�

We limited ourselves to Reduction Rules ��� because

� Reduction Rules ��� are simple to implement�

� Reduction Rules ��� yield grammars which are su�ciently reduced so as to yield

excellent data compression capability �Theorem �	�

Remark� Cook et al�
� developed a hill climbing search process to infer a simple

grammar G whose language L�G	 contains a given set of strings S� The grammar inferred

by their algorithm locally minimizes an objective function M�GjS	 which measures the

�goodness of �t� of the grammar G to the set of strings S� It is interesting to note that

Reduction Rules ��� were proposed in
� as part of the search process� along with some

other rules� However� unlike our approach in the present paper� Cook et al� do a reduction

step only if the objective function is made smaller by doing so�

Using Reduction Rules ���� it is possible to design a variety of irreducible grammar

transforms� We discuss two of these� the longest matching substring algorithm and the

modi�ed SEQUITUR algorithm�

��� Longest Matching Substring Algorithm

For a given data string x� start with the trivial grammar consisting of the single production

rule S � x� and then look for a substring of x that is as long as possible and appears in

at least two nonoverlapping positions in x� �We call such a substring a longest matching

substring�	 A �rst round of reductions using Reduction Rules ��� is then performed� in

which each nonoverlapping appearance of the longest matching substring is replaced by

a variable� resulting in a new grammar� In subsequent rounds of reductions� one �rst

detects a longest matching substring �the longest A�string appearing in nonoverlapping

positions in the right members of the previously constructed grammar	� and then applies

Reduction Rules ��� to obtain a new grammar� The rounds of reductions terminate as

soon as a grammar is found for which no longest matching substring can be found� This

grammar is irreducible and represents x� Calling this grammar Gx� we have de�ned a

grammar transform x� Gx� This grammar transform is the longest matching substring

algorithm� Example �� illustrates the use of the longest matching substring algorithm� In

each list of production rules that was generated in Example ��� the right member of the

last rule listed is the longest matching substring that was used in the round of reductions

that led to that list�

��� Modi�ed SEQUITUR Algorithm

Process the data string x � x�x� � � � xn one data sample at a time� from left to right�

Irreducible grammars are generated recursively� with the i�th grammar Gi representing

the �rst i data samples� Each new data sample xi is appended to the right end of the right

member of the S production rule of the previous grammar Gi��� and then reductions take

place to generate the next grammarGi before the next sample xi�� is processed� Since only

one sample is appended at each stage of recursive grammar formation� the reductions that

need to be performed to recursively generate the irreducible grammars fGig are simple�

The �nal grammar Gn is an irreducible grammar which represents the entire data string

x� Calling this �nal grammar Gx� we have de�ned a grammar transform x � Gx� We

call this transform the modi�ed SEQUITUR algorithm because of its resemblance to the

SEQUITUR algorithm studied in the papers
���
����

Remark� The SEQUITUR algorithm
���
��� can generate a grammar Gx represent�

ing a data string x which is not a member of the set of grammars G��A	� and therefore we

cannot apply Theorem � to the SEQUITUR algorithm� It is an open problem whether the

SEQUITUR algorithm leads to a universal source code� On the other hand� the modi�ed

SEQUITUR algorithm does lead to a universal source code�

�

� Conclusions

We conclude the paper by embedding our grammar based coding approach into a general

framework which lends perspective to the approach and allows one to more easily relate

the approach to other source coding approaches�

Our general framework employs Turing machines� We adopt the usual de�nition of

Turing machine �see
���� pp� �����	� considering all Turing machines whose output al�

phabet is the set A� Each Turing machine possesses a doubly�in�nite tape consisting of

cells

� � � � C��� C��� C�� C�� C�� � � �

which are linked together from left to right in the indicated order� each cell Ci can store

a symbol from A or else its content is blank� There is also a read write head which can

be positioned over any of the cells on the machine tape� A Turing machine executes a

computation by going through �nitely or in�nitely many computational cycles� possibly

changing its machine state during each cycle� A computational cycle of a Turing machine

consists of an operation of one of the following two types�

�i� Read write head is moved one cell to the left or right of its current position� and the

machine moves to a new state or stays in the same state�

�ii� Read write head stays in its current position� and either a symbol from A or a blank

is written into the cell below� replacing the previous cell content� or the machine

state is changed �or both	�

In our use of Turing machines� we di�er from the standard approach in that we do not

program our Turing machines� �A Turing machine is programmed by placing �nitely

many inputs in the cells of the machine tape before the machine goes through its �rst

computational cycle�the inputs can be varied to induce the machine to produce di�er�

ent computations�	 We always assume that in performing a computation using a given

Turing machine� the initial con�guration of the machine!s input tape is �all cells blank�

�in other words� the input to the machine is the empty string	� By initializing the ma�

chine!s tape cells to be blank� the machine is set up to do one and only one computation�

�Nothing is lost by doing this�if a string is computed using a Turing machine whose

�

initial tape con�guration has �nitely many nonblank cells� it is not hard to constuct an�

other Turing machine which starts with blank cells and emulates the computations done

on the �rst machine after �nitely many computational cycles�	 When a Turing machine

does a computation� either the computation goes on forever or the machine halts after

�nitely many computational cycles� We say that a Turing machine computes an A�string

x�x� � � � xn if the machine halts with consecutive tape cells C�� C�� � � � � Cn having contents

x�� x�� � � � � xn� respectively� and with every other tape cell having blank content� The

reader now sees that in our formulation� given a Turing machine T � either �i	 there exists

exactly one A�string x such that T computes x� or else the machine T computes no string

in A� �meaning that the machine did not halt� or else halted with cell contents not of the

proper form described previously	�

General Framework� Let � � �T�� T�� � � �	 be any sequence of Turing machines such

that the following property holds�

�x � A�� Ti computes x for at least one i �����	

Let B�� B�� B�� � � � be the lexicographical ordering of all binary strings in f�� �g�� �This

is the sequence ������������������������ etc�	 De�ne

C�xj� 	
�
� minfjBij � Ti computes xg� x � A�

Also� de�ne a lossless alphabet A source code to be a � based code if for each A�string

x� the codeword into which x is encoded is a Bi � fB�� B�� � � �g such that Ti computes x�

The following coding theorem is an easy consequence of these de�nitions�

Theorem � Let � � �T�� T�� � � �	 satisfy ����	�� Then

�a� for any � based code ��

C�xj� 	 � j���x	j� x � A�

�b� there exists a � based code � such that

C�xj� 	 � j���x	j� x � A� �����	

�

Discussion� Let us call a � based code satisfying �����	 an optimal � based code�

Let us call the function x� C�xj� 	 from A� to f�� �� � � � �g the � complexity function�

Theorem � tells us that there is an optimal � based code� and that its codeword length

performance is governed by the � complexity function�

By changing � � we get di�erent families of � based codes� as the following two examples

indicate�

Example ��� Let � � �T�� T�� � � �	 be an e�ective enumeration of all Turing machines�

as described in �
���� Section �����	� The � complexity function is then the Kolmogorov

complexity function �
���� pp� ��"��	� The family of � based codes is very wide� To see

this� let Crec�A	 be the family of all alphabet A lossless source codes whose encoder is a

one�to�one total recursive function onA� and whose decoder is a partial recursive function

on f�� �g�� Let � be a code in Crec�A	� Using the Invariance Theorem of Kolmogorov

complexity theory �
���� Section ���	� one can show that there is a positive constant C

and a � based code �� in Crec�A	 such that

����x	 � ���x	 � C� x � A�

On the other hand� any optimal � based code is not a member of Crec�A	� because� if it

were� there would be a computable version of the Kolmogorov complexity function� and

this is known not to be true �the paper
��� gives a rather strong refutation	�

Example ��� Let

G�� G�� G�� G	� � � �

be the ordering of the grammars in G�A	 such that the corresponding codewords

B�G�	� B�G�	� B�G�	� B�G		� � � �

are in lexicographical order� For each G � G�A	� de�ne the new codeword B�G	� in

which B�G	� � Bi for that i for which Gi � G� Since jB�G	�j � jB�G	j for every G�

we lose nothing by rede�ning the concept of grammar based code to use the codewords

fB�G	� � G � G�A	g instead of the codewords fB�G	 � G � G�A	g� Accordingly� let us

now de�ne a code � to be a grammar based code if there exists a grammar transform

�

x� Gx for which

���x	 � B�Gx	
�� x � A�

For each grammar G in G�A	� one can construct a Turing machine T �G	 with control

function based on the production rules of G� which computes the data string represented

by G� Let � � �T �G�	� T �G�	� � � �	� The family of � based codes is the family of grammar

based codes� Therefore� an optimal � based code is an optimal grammar based code� It

can be seen that there is an optimal grammar based code belonging to the family of codes

Crec�A	 introduced in Example ��� The complexity function x� C�xj� 	� which describes

the codeword length performance of optimal grammar based codes� is computable� unlike

the Kolmogorov complexity function �although we conjecture that there is no polyno�

mial time algorithm which computes an optimal grammar based code or this complexity

function	� Future research could focus on obtaining bounds on the complexity function

x � C�xj� 	 so that we could have a better idea how optimal grammar based codes

perform�

We conclude the paper by remarking that the Chomsky hierarchy of grammars �
����

Chapter �	 can be mined to provide other instances in which it might be useful to look at a

family of � based codes for a sequence of machines � associated with a set of grammars� To

illustrate� the set of context�sensitive grammars belongs to the Chomsky hierarchy� Each

data string could be represented using a context�sensitive grammar� and then a machine

could be constructed which computes the data string� using the production rules of the

grammar as part of the machine!s logic� Letting � be an enumeration of these machines�

the corresponding family of � based codes �which is strictly larger than the family of

grammar based codes of this paper	� might contain codes of practical signi�cance that

are waiting to be discovered�

Acknowledgements� The authors are grateful to W� Evans� R� Maier� A� Man�

tilla� G� Nelson� M� Weinberger� and S� Yakowitz for helpful comments concerning this

work� Special thanks are due to Professors M� Marcellin of the University of Arizona

Department of Electrical and Computer Engineering� H� Flaschka of the University of

Arizona Department of Mathematics� and J� Massey of the Swiss Federal Institute of

Technology �Z#urich� Switzerland	 for arranging for �nancial support during the �rst au�

�

thor!s ����"�� sabbatical that helped to make the completion of this work possible�

� Appendix A

In this Appendix� we prove Theorem � by means of a sequence of lemmas�

Lemma � Let G be a deterministic context�free grammar such that the empty string is

not the right member of any production rule of G� Suppose that the derivation graph of

G is acyclic� Let u be a string in �V �G	 � T �G		� which is not a string in T �G	�� Then

there exists a variable A � V �G	 such that both of the following hold�

� A is an entry of u�

� A is not an entry of any of the strings f iG�u	� i � �� �� � � � �

Proof� We suppose that the conclusion of the lemma is false� and prove that there

must exist a cycle in the derivation graph� Let S be the set of all variables in V �G	 which

are entries of u� By assumption� S is not empty� For each A � S� let S�A	 be the set

S�A	 � fB � V �G	 � B is an entry of some f iG�A	� i � �g

Notice that each variable in V �G	 appearing in at least one of the strings f iG�u	� i � ��

must lie in the union of the sets S�A	� Since the conclusion of the lemma was assumed

to be false� for each A � S� there exists B � S such that A � S�B	� Pick an in�nite

sequence A�� A�� A�� � � � from S such that

Ai � S�Ai��	� i � � �����	

Since the set S is �nite� there must exist A � S and positive integers i� � i� such that

Ai� � Ai� � A �����	

Observe that if B � S�A	� then there is a path in the derivation graph which starts at

the A vertex and ends at the B vertex� Applying this observation to the statements in

�

�����	 for which i� � i � i�
 �� we see that there is a path in the derivation graph such

that the vertices visited by the path� in order� are

Ai�� Ai���� � � � � Ai���� Ai�

Relation �����	 tells us that this path begins and ends at A and is therefore a cycle�

Lemma � Let G be a deterministic context�free grammar for which the empty string is

not the right member of any production rule of G� and for which the derivation graph is

acyclic� Then

f
jV �G�j
G �u	 � T �G	�� �u � �V �G	 � T �G		�

Proof� Fix u � �V �G	 � T �G		�� We assume that

f
jV �G�j
G �u	 �� T �G	� �����	

and show that this leads to a contradiction� The assumption �����	 leads us to conclude

that each string f iG�u	� i � �� �� � � � � jV �G	j� must have at least one entry which is a

member of V �G	� Applying the previous lemma� there exists a sequenceA�� A�� � � � � AjV �G�j

of variables from V �G	 such that the following hold�

�i� Ai is an entry of f iG�u	� i � �� �� � � � � jV �G	j�

�ii� For each i � �� �� � � � � jV �G	j� the variable Ai is not an entry of any of the strings

f jG�u	� j � i�

There are more terms in the sequence A�� A�� � � � � AjV �G�j than there are members of V �G	�

Therefore� we may �nd a variable A and integers i� � i� from the set f�� �� � � � � jV �G	jg

such that Ai� � Ai� � A� Because of statements �i	 and �ii	 above� we see that Ai�� and

therefore A� is an entry of f i�G �u	 but not an entry of f i�G �u	� From statement �i	 above�

we see that Ai�� and therefore A� is an entry of f i�G �u	� We have arrived at the desired

contradiction�

Lemma � Let G be a deterministic context�free grammar for which the empty string is

not the right member of any production rule of G� and for which the derivation graph is

��

acyclic and rooted at the S vertex� Then each symbol in V �G	 � T �G	 is an entry of at

least one of the strings f iG�S	� i � �� �� � � � � jV �G	j�

Proof� If Y � V �G	�T �G	 and A � V �G	� and there is a path in the derivation graph

consisting of i edges which starts at the A vertex and ends at the Y vertex� then it is easy

to see that Y is an entry of f iG�A	� Fix Y � V �G	 � T �G	� Y �� S� The proof is complete

once we show that Y is an entry of f iG�S	 for some positive integer i � jV �G	j� Since

the derivation graph is rooted at S� there is a path fe�� e�� � � � � eig which starts at the S

vertex and ends at the Y vertex� For each j � �� � � � � i� let Aj � V �G	 be the variable

such that the edge ej starts at the Aj vertex of the derivation graph� Since the derivation

graph is acyclic� the terms in the sequence A�� A�� � � � � Ai are distinct members of V �G	�

Therefore� it must be that i � jV �G	j� By our observation at the beginning of the proof�

we also have that Y is an entry of f iG�S	� The proof is complete�

Lemma � Let G be an admissible context�free grammar� Then the derivation graph of G

is rooted at the S vertex�

Proof� The proof is by induction� Let Y �� S be a symbol in V �G	 � T �G	� We must

show that there is a path in the derivation graph of G which starts at the S vertex of the

graph and terminates at the Y vertex of the graph� Since Y is not a useless symbol� we

can �nd a sequence of strings ��� ��� � � � � �k such that

� �� is the right member of the production rule whose left member is S�

� If k � �� then �i
G
� �i��� i � �� � � � � k
 ��

� Y is an entry of �k�

Suppose k � �� In the derivation tree� there is a path consisting of one edge which starts

at the S vertex and terminates at the Y vertex� Suppose k � �� We may take as our

induction hypothesis the property that for every symbol in �k��� there is a path in the

derivation graph leading from the S vertex to the vertex labelled by that symbol� Pick an

entry A � V �G	 from �k�� such that �k arises when the right member of the A production

rule is substituted for A in �k��� To a path leading from the S vertex to the A vertex� we

may then append an edge leading from the A vertex to the Y vertex� thereby obtaining

a path leading from the S vertex to the Y vertex�

��

Lemma � Let G be an admissible context�free grammar� Then the derivation graph of G

is acyclic�

Proof� Since L�G	 is not empty� for some i � �� the string f iG�S	 is a member of L�G	

and therefore a member of T �G	�� which implies that the following property holds�

Property� All but �nitely many terms of the sequence ff iG�S	 � i � �g coincide with a

string in T �G	��

Suppose A�B are variables in V �G	 and there is a path in the derivation graph leading

from the A vertex to the B vertex� Since A is not a useless symbol� A is an entry of f iG�S	

for some i� Using the path from the A vertex to the B vertex� one then sees that B is an

entry of f jG�S	 for some j � i� This implies that if there were a cycle in the derivation

graph� some A � V �G	 �the variable labelling the vertex at the beginning and the end of

the cycle	 would be an entry of f iG�S	 for in�nitely many i� This being a contradiction of

the Property� the derivation graph must be acyclic�

Proof of Theorem �� Statement �i	 of Theorem � implies Statement �ii	 of Theorem �

by Lemmas � and �� Statement �ii	 of Theorem � implies Statement �iii	 of Theorem �

by Lemmas � and �� It is evident that Statement �iii	 implies Statement �i	�

	 Appendix B

In this Appendix� we prove Lemmas � and �� We adopt a notation that will be helpful in

these proofs� If u and v are strings in the same multiplicative monoid S�� we shall write

u v to denote that v can be obtained by permuting the entries of the string u� �In the

language of
��� u v means that u and v belong to the same type class�	 We �rst need

to establish the following lemma that is an aid in proving Lemmas � and ��

Lemma Given any grammar G � G��A	� there exists a parsing � of the A�string

represented by G satisfying

H�G	 � H���	 � jGj �����	

��

Furthermore� � is related to 	G in the following way� There is a string � � ���� � � ��t in

V �G	 � T �G	 such that � 	G and

� � �f�G ���	� f
�
G ���	� � � � � f

�
G ��t		 �����	

Proof� Fix G � G��A	� Let x be the A�string represented by G� Find any string � for

which there are strings �i� � � i � jV �G	j
 �� satisfying

�i� �� � fG�A�	 and �jV �G�j�� � ��

�ii� For each � � i � jV �G	j
�� the string �i is obtained from the string �i�� by replacing

exactly one appearance of Ai in �i�� with fG�Ai	� �By this� we mean that there

exist strings ��� �� such that ���� Ai� ��	 is a parsing of �i�� and ���� fG�Ai	� ��	 is a

parsing of �i�	

Letting t be the length of the string �� write � � ���� � � � �t� where ��� � � � � �t � V �G	 �

T �G	� Let � be the sequence of substrings of x de�ned by �����	� Studying the construc�

tion in �i	��ii	� it can be seen that � 	G� We complete the proof by showing that �

is a parsing of x satisfying �����	� From the equation �����	 and the fact that f�G is an

endomorphism� � is a parsing of f�G ��	� Therefore� � will be a parsing of x provided we

can show that

f�G �A�	 � f�G ��	 �����	

From statement �ii	 above� for each � � i � jV �G	j
 ��

f�G ��i��	 � f�G ���	f�G �Ai	f�G ���	

f�G ��i	 � f�G ���	f�G �fG�Ai		f�G ���	

From conclusion �iv	 of Theorem �� the two middle factors in the right members of the

preceding equations are equal� from which we conclude that the left members are equal�

and then �����	 must hold� Using again the fact that � 	G� the unnormalized entropies

of these two strings must coincide� whence

H�G	 � H��	G	 � H���	�

�

and �����	 will be true provided we can show that

H���	 � H���	 � jGj ����	

Let ���� be the string obtained from � by striking out all entries of � which belong to

T �G	� Let ���� be the string obtained from � by striking out all entries of � which belong

to V �G	� For i � �� �� let ��i� be the subsequence of � obtained by applying f�G to

the entries of ��i�� If ���� is the empty string or if ���� is the empty string� then the

mapping f�G provides a one�to�one correspondence between the entries of � and �� forcing

H���	 � H���	 and the conclusion that ����	 is true� So� we may assume that neither

of the sequences ����� ���� is the empty string� Properties of unnormalized entropy give us

H���	 � H������	 �H������	 � j�j

H���	 � H������	 �H������	 �����	

We also have

H������	 � H������	

H������	 � H������	 �����	

Combining �����	 with �����	� and using the fact that j�j � jGj� we obtain ����	� com�

pleting the proof of Lemma ��

��� Proof of Lemma �

Fix a positive integer k� Choose an arbitrary A�string x� an arbitrary grammarG � G��A	

which represents x� and an arbitrary alphabet A k�th order �nite state source
� We

wish to establish the inequality ����	� Let n be the length of x� and we write out x

as x � x�x� � � � xn� where each xi � A� Appealing to the de�nition of the family of

information sources �k
fs�A	� we select a set S of cardinality k� s� � Sk� and nonnegative

real numbers fp�s� xjs�	 � s� s� � Sk� x � Ag such that ���	�����	 hold� We introduce the

��

function � � A� �
�� �� in which

� �y	
�
� max

s��Sk

X
s��s������sm�Sk

mY
i��

p�si� yijsi��	

for every A�string y � y�y� � � � ym� We note for later use that for every A�string y and

every parsing �v�� v�� � � � � vj	 of y� the following relation holds�

� �y	 � � �v�	� �v�	 � � � � �vj	 �����	

There exists a probability distribution p� on A� such that for every positive integer r and

every y � Ar�

p��y	 � Qkk
��r��� �y	 �����	

where it can be determined that Qk is a positive constant that must satisfy Qk � ����

Applying Lemma �� let � � �u�� u�� � � � � ut	 be a parsing of x with t � jGj
 jV �G	j � �

such that �����	 holds� We have

H���	 � min
q

tX
i��

 log q�ui	 �
tX

i��

 log p��ui	 �����	

where the minimum is over all probability distributions q on A�� From �����	������	�

�x	 �

	
tY

i��

p��ui	

 	
tY

i��

f�kjuij
�g

�����	

Combining �����	� �����	� and �����	� we have

H�G	 �
 log
�x	 � t�� � log k	 � jGj � �
tX

i��

log juij ����	

We can appeal to the concavity of the logarithm function to obtain

tX
i��

log juij � t�� log

�Pt
i�� juij

t

�
� t log�n�t	 ����	

��

Combining ����	�����	� along with the fact that t � jGj
 jV �G	j� �� we see that ����	

holds�

��� Proof of Lemma �

The following lemma� used in the proof of Lemma �� is easily proved by mathematical

induction�

Lemma � Let � be a real number satisfying � � ��� The following statement holds for

every integer r � ��
rX

n��

n�n
 �	�n � �r
 	
rX

n��

�n
 �	�n ����	

We begin our proof of Lemma � by �xing an A�string x of length at least jAj�	� Let G

be any irreducible grammar which represents x� We have V �G	 � fA�� A�� � � � � AjV �G�j��g�

where A� is the start symbol of G� For each � � i � jV �G	j
 �� we can express

fG�Ai	 � �i
��

i
� � � ��

i
ni

where each �i
j � A � V �G	� For each i � �� �� � � � � jV �G	j
 �� let

$fG�Ai	
�
�

�������
�������

fG�Ai	� jfG�Ai	j even

�i
��

i
� � � ��

i
ni
� jfG�Ai	j � � and odd� jf�G ��i

�	j � jf�G ��i
ni
	j

�i
��

i
� � � ��

i
ni��

� jfG�Ai	j � � and odd� jf�G ��i
ni
	j � jf�G ��i

�	j

empty string� jfG�Ai	j � �

De�ne the three strings

%x
�
� f�G ��G	

s�x	
�
� $fG�A�	 $fG�A�	 � � � $fG�AjV �G�j��	

$x
�
� f�G �s�x		

��

The strings s�x	 and $x are not the empty string because jfG�Ai	j � � for at least one i�

De�ne m�x	 to be the positive integer

m�x	
�
�
js�x	j

�

We derive the following relationships which shall be useful to us in the proof of Lemma ��

jxj � j%xj � �jxj ���	

jGj � m�x	 � jAj ����	

j$xj � j%xj � �j$xj� jAj ����	

From the fact that x f�G �	G	 �deducible from Lemma �	� and the fact that

�G A�A� � � �AjV �G�j��	G

we deduce that

%x f�G �A�A� � � �AjV �G�j��	x

and therefore

j%xj � jf�G �A�A� � � �AjV �G�j��	j� jxj ����	

Since G is irreducible� each of the variables A�� A�� � � � � AjV �G�j�� appears at least once in

	G� and therefore we must have

jf�G �A�A� � � �AjV �G�j��	j � jf�G �	G	j � jxj ����	

From ����	 and ����	� we conclude that ���	 is true�

Now we prove the relation ����	� Since G is irreducible� if jfG�A	j � � for a variable

A � V �G	� then fG�A	 � A� whence

jfA � V �G	 � jfG�A	j � �gj � jAj ����	

��

Using ����	� we obtain

jGj �
X

A�V �G�

jfG�A	j

�
X

jfG�A�j even

jfG�A	j�
X

jfG�A�j odd

jfG�A	j

�
X

jfG�A�j even

jfG�A	j

�
�

X
jfG�A�j odd

�
jfG�A	j
 �

�

�
� jAj ����	

Noting that

m�x	 �

hP
jfG�A�j even jfG�A	j

i
�
hP

jfG�A�j oddfjfG�A	j
 �g
i

�

we see that ����	 follows from ����	�

We now turn our attention to the proof of ����	� By construction of the string s�x	

and ����	� there are strings q� and q� such that

�i� �G s�x	q�q�

�ii� q� � A� and jq�j � jAj�

�iii� If q� is not the empty string� there is a one�to�one correspondence between the

entries of q� and certain entries of s�x	 such that if Y is an entry of q� and ZY is

the corresponding entry of s�x	� then jf�G �Y 	j � jf�G �ZY 	j�

If we apply the endomorphism f�G to �i	� we see that

%x $xq�f
�
G �q�	 �����	

Because of �iii	�

jf�G �q�	j � jf�G �s�x		j � j$xj �����	

Applying the relations �����	������	 together with the fact from �ii	 that jq�j � jAj� we

conclude

j%xj � j$xj� jq�j� jf�G �q�	j

��

� �j$xj� jAj �����	

from which ����	 follows�

Having demonstrated the relations ���	�����	� we can now �nish the proof of Lemma

�� Factor s�x	 as

s�x	 � w�w� � � �wm�x�

where each wi � �A� V �G		�� Because G is irreducible� the strings w�� w�� � � � � wm�x� are

distinct� We express each wi as

wi � w�
iw

�
i

where w�
i � w

�
i � A � V �G	� Let � � A� be arbitrary� We need to upper bound the

cardinality of the set

W� � f� � i � m�x	 � f�G �wi	 � �g

To this end� let � be the mapping from the setW� into the set f�� �� � � � � j�j
�g�f�� �g�

f�� �g in which i � W� is mapped into

��i	 � �jf�G �w�
i 	j� b�� b�	

where for each q � �� ��

bq
�
�

�
� �� wq

i � A

�� otherwise

Since the mapping � is one�to�one� we must have

jW�j � ��j�j
 �	

We conclude that

jf� � i � m�x	 � jf�G �wi	j � ngj � ��n
 �	jAjn� n � � ����	

De�ne fjn � n � �g and fkn � n � �g to be the sequences of integers

jn
�
� jf� � i � m�x	 � jf�G �wi	j � ngj

��

kn
�
� ��n
 �	jAjn

De�ne fMr � r � �g and fNr � r � �g to be the sequences of positive integers

Mr
�
�

rX
n��

kn

Nr
�
�

rX
n��

nkn

Notice that

jxj � jAj�� � jAj
jAj� � ��jAj� � ��jAj� � jAj

This fact implies� via ����	� that

j$xj � �jAj� � N�

and so we may de�ne an integer r�x	 � � as follows�

r�x	
�
� maxfr � Nr � j$xjg

We establish a lower bound on r�x	� Notice that

j$xj � Nr�x� � jAjr�x� � �r�x�

from which it follows that

r�x	 � log j$xj

On the other hand�

j$xj � Nr�x��� � ��r�x	 � �	r�x	�jAjr�x��� � �r�x	�jAjr�x���

and so

log j$xj � � log r�x	 � �r�x	 � �	 log jAj � � log log j$xj� �r�x	 � �	 log jAj

��

from which we conclude that

r�x	
 �
log j$xj
 log log j$xj
 � log jAj

log jAj
�����	

We examine the right side of �����	 in more detail� It is a simple exercise in calculus to

show that

log u
 log log u �
log u

�
� u � ��� �����	

Notice that

jxj � jAj�	 � jAj�� � jAj � ��� � jAj

and therefore

j$xj � ���

Combining this fact with �����	� we see that

log j$xj
 log log j$xj
 � log jAj
 �
log j$xj

�

 � log jAj
 �����	

From the fact that

jxj � jAj�	 � �jAj

it follows that

j$xj �
jxj
 jAj

�
�
jxj

�

and therefore

log j$xj

�

 � log jAj
 �

log jxj

�

 � log jAj
 �

� � log jAj
 � � � �����	

Applying �����	 to �����	� we conclude that

r�x	
 �
log jxj
 � log jAj
 �

� log jAj
� � �����	

��

From the de�nition of r�x	� we have

j$xj � Nr�x� �& �
�X
n��

njn �

�
�r�x�X
n��

nkn

�
A�&

where & � �� From this we argue�

P�
n�r�x��� njn �

hPr�x�
n�� n�kn
 jn	

i
�&P�

r�x��� jn �
hPr�x�

n��

�
n

r�x���

�
�kn
 jn	

i
� �

r�x���

The preceding allows us to conclude that

m�x	 �
�X
n��

jn �

�
�r�x�X
n��

�
�

n

r�x	 � �

�
jn

�
��

�
�r�x�X
n��

�
n

r�x	 � �

�
kn

�
��

&

r�x	 � �
�����	

Since jn � kn �see ����		� we may replace jn with kn in the �rst term on the right in

�����	 to obtain the bounds

m�x	 �Mr�x� �
&

r�x	
�
Nr�x� �&

r�x	

�

j$xj

r�x	

�����	

where in the preceding we also used Lemma �� Applying to �����	 the lower bound on

r�x	
 that was established in �����	� we obtain

m�x	

j$xj
�

� log jAj

log jxj
 � log jAj
 �
�����	

From the relationships ���	�����	� one can see that

jGj
 jAj

�jxj
�
m�x	

�jxj
�
m�x	

j%xj
�
m�x	

j$xj
�����	

Combining �����	 and �����	� we obtain ����	� the desired conclusion of Lemma ��

��

References

�� A� Aho� R� Sethi� and J� Ullman� Compilers� Principles� Techniques� and Tools�

Addison�Wesley� Reading� MA� �����

�� R� Cameron� �Source Encoding Using Syntactic Information Source Models�� IEEE

Trans� Inform� Theory� vol� �� pp� ��"���� �����

� C� Cook� A� Rosenfeld� and A� Aronson� �Grammatical Inference by Hill Climbing��

Informational Sciences� vol� ��� pp� ��"��� �����

�� T� Cover� �Enumerative Source Encoding�� IEEE Trans� Inform� Theory� vol� ���

pp� �"��� ����

�� T� Cover and J� Thomas� Elements of Information Theory� John Wiley � Sons� Inc��

New York� �����

�� I� Csisz'ar and J� K#orner� Information Theory� Coding Theorems for Discrete Mem�

oryless Systems� Academic Press� New York� �����

�� L� Davisson� �Universal Noiseless Coding�� IEEE Trans� Inform� Theory� vol� ��� pp�

��"���� ����

�� J� Deller� J� Proakis� and J� Hansen� Discrete�Time Processing of Speech Signals�

Macmillan Publishing Co�� Englewood Cli�s� NJ� ����

�� C� Hobby and N� Ylvisaker� �Some Structure Theorems for Stationary Probability

Measures on Finite State Sequences�� Ann� Math� Stat�� vol� �� pp� ���"���� �����

��� J� Hopcroft and J� Ullman� Introduction to Automata Theory� Languages� and Com�

putation� Addison�Wesley� Reading� MA� �����

��� E� Kawaguchi and T� Endo� �On a Method of Binary�Picture Representation and Its

Application to Data Compression�� IEEE Trans� on Pattern Analysis and Machine

Intelligence� vol� �� pp� ��"�� �����

�

��� J� C� Kie�er and E��H� Yang� �Sequential Codes� Lossless compression of Individual

Sequences� and Kolmogorov Complexity�� IEEE Trans� Inform� Theory� Vol� ��� pp�

��"�� �����

�� J� Kie�er� E�h� Yang� G� Nelson� and P� Cosman� �Universal Lossless Compression

via Multilevel Pattern Matching�� IEEE Trans� Inform� Theory� under review�

��� E� Kourapova and B� Ryabko� �Application of Formal Grammars for Encoding In�

formation Sources�� Problems of Information Transmission� vol� �� pp� �"��� �����

��� A� Lempel and J� Ziv� �On the Complexity of Finite Sequences�� IEEE Trans� Inform�

Theory� vol� ��� pp� ��"��� �����

��� M� Li and P� Vit'anyi� An Introduction to Kolmogorov Complexity and its Applica�

tions� Springer�Verlag� New York� ����

��� A� Lindenmayer� �Mathematical Models for Cellular Interaction in Development��

Jour� of Theoretical Biology� vol� ��� pp� ���"��� �����

��� C� Nevill�Manning and I� Witten� �Identifying Hierarchical Structure in Sequences�

A Linear�Time Algorithm�� Jour� Arti�cial Intell� Res�� vol� �� pp� ��"��� �����

��� C� Nevill�Manning and I� Witten� �Compression and Explanation Using Hierarchical

Grammars�� Computer Journal� vol� ��� pp� ��"���� �����

��� E� Plotnik� M� Weinberger� and J� Ziv� �Upper Bounds on the Probability of Se�

quences Emitted by Finite�State Sources and on the Redundancy of the Lempel�Ziv

Algorithm�� IEEE Trans� Inform� Theory� vol� �� pp� ��"��� �����

��� G� Rozenberg and A� Salomaa� The Mathematical Theory of L Systems� Academic

Press� New York� �����

��� R� Schalko�� Digital Image Processing and Computer Vision� John Wiley � Sons�

New York� �����

�� Y� Shtarkov� �Fuzzy Estimation of Unknown Source Model for Universal Coding��

Proc� ��� IEEE Information Theory Workshop �Killarney� Ireland�� pp� ��"���

��

��� J� Storer and T� Szymanski� �Data Compression via Textual Substitution�� Jour�

Assoc� Comput� Mach�� vol� ��� pp� ���"���� �����

��� E�h� Yang and J� Kie�er� �E�cient Universal Lossless Data Compression Algorithms

Based on a Greedy Sequential Grammar Transform�Part One� Without Context

Models�� IEEE Trans� Inform� Theory� Jan� ����� to appear�

��� J� Ziv� �Coding Theorems for Individual Sequences�� IEEE Trans� Inform� Theory�

vol� ��� pp� ���"���� �����

��� J� Ziv and A� Lempel� �Compression of Individual Sequences via Variable�rate Cod�

ing�� IEEE Trans� Inform� Theory� vol� ��� pp� ��"��� �����

��

x� grammar

transform

� Gx � grammar

encoder

� B�Gx	

Figure �� Encoder Structure of Grammar Based Code

��

