

content.pdf
The JPEG2000 Standard

Author: Karen L. Gray
Advisors: Prof. Eckehard Steinbach

Andrea Bör

Technische Universität München

Lehrstuhl für Kommunikationsnetze

Prof. Dr.-Ing. Jörg Eberspächer

This article provides a hard copy of the content explained in the tutorial program. The
content hierarchy can be seen in Figure 1. The main reference source for the content is
[1]. This book is an authoritative work on JPEG2000 from two key JPEG2000 group
members. Also, the book is the main reference source for Prof. Steinbach’s image and
video compression course. Other key references include [2], [3], and [4].

JPEG2000
Tutorial

Digital
Images

Fundamentals

Inside
JPEG2000

Further
Reading

Introduction Encoding Decoding

Wavelets

Characteristics Exercises

Figure 1: Content hierarchy for the JPEG2000 tutorial.

1 DIGITAL IMAGES 2

1 Digital Images

This section explains what digital images are, their characteristics, and the different types
of digital images. Also, a motivation for the compression of digital images is given.

1.1 What are digital images?

Digital images are described as bitmaps formed of individual pixels. The semantic content,
or structural information, is not preserved in the representation. As a result, images cannot
be revised. Digital images result from either real world capture or computer generation.
They can be captured from the real world through scanning or the use of a digital camera.
Computer generation can be performed with the use of a paint program, screen capture,
or the conversion of a graphic into a bitmap image.

The simplest digital images are bi-level images. In this case, each pixel has only one of two
values: black or white, and pixel encoding requires only one bit. This format is used to
encode sharp documents and faxes. In the case of black and white photos, shades of gray
are present. Two values are no longer sufficient to encode all possible gray intensities. In
this case, each pixel is assigned a numerical value which is proportional to the brightness
of that point. Typical values range from 0 to 15 or 0 to 255 (requiring respectively 4 and
8 bits for each pixel). Such an image is called a grayscale image.

The encoding of color images takes advantage of the fact that any color can be expressed as
a combination of three primary colors, for example, red, green, and blue (RGB) or yellow,
magenta, and cyan (YMC). Therefore, a color picture can be seen as the superposition of
three color component planes. In each plane the brightness (or luminosity) of a primary
color is encoded. Mathematically, color images would be represented by three matrices,
one for each color component plane, superimposed upon each other.

In many scientific applications, images may have more than three planes of information
(e.g. multi-spectral images) and may be higher dimensional.

1.2 Why do we compress images?

The motivation for the compression of images is illustrated through the use of Figure 2.
This figure shows the storage size, transmission bandwidth, and transmission time needed
for various types of uncompressed images. It is clear from these values, that images require
much storage space, large transmission bandwidths, and long transmission times. With
the present state of technology, the only solution is to compress images before their storage
and transmission. Then, at the receiver end, the compressed images can be decompressed.

2 FUNDAMENTALS 3

Image Type

Grayscale

Color

Medical

Super High
Density (SHD)

Size Bits/Pixel

512 x 512

512 x 512

2048 x 1680

2048 x 2048

8 bpp

24 bpp

12 bpp

24 bpp

Uncompressed
Size

262 KBytes

786 KBytes

5.16 MBytes

12.58 MBytes

Transmission
Bandwidth

2.1 Mbit/image

6.29 Mbit/image

41.3 Mbit/image

100 Mbit/image

Transmission
Time (using a
28.8K modem)

1 min 13 sec

3 min 39 sec

23 min 54 sec

58 min 15 sec

Figure 2: Storage and transmission needs for various types of uncompressed images [5]

2 Fundamentals

This section will contain explanations for the fundamental theoretical concepts used in
JPEG2000. These sections will be completed in future student projects.

3 Inside JPEG2000

Inside JPEG2000 begins with an introduction which provides a motivation for the devel-
opment of the standard and a brief overview of the development process. It then explains
the encoding and decoding of images using JPEG2000. Finally, the characteristics of
JPEG2000 are presented.

3.1 Introduction

According to [6], as technology developed, it became clear that JPEG [7] was not properly
evolving to meet current needs. The widening of the application area for JPEG led to
confusion among implementors and technologists, resulting in a standard that was more a
list of components than an integrated whole. Afterwards, attempts to improve the standard
were met with a naively sated marketplace. It was clear that improvement would only take
place if a radical step forward was taken.

At the same time, Ricoh Innovations, Inc. unsuccessfully submitted the CREW algorithm
[8] for use in JPEG-LS [9]. However, it was recognized that CREW provided a rich set of
features worthy of a new standardization effort, and in 1996 the JPEG2000 working group
was created.

3 INSIDE JPEG2000 4

The JPEG2000 working group hoped to create a standard which would address the faults
of current standards [4]:

Poor low bit-rate compression: JPEG offers excellent rate-distortion perfor-
mance in the mid and high bit-rates, but at low bit-rates the subjective distortion
becomes unacceptable.

Lossy and lossless compression: There is currently no standard that can provide
superior lossless and lossy compression in a single code-stream.

Large image handling: JPEG does not allow for the compression of images larger
than 64K by 64K without tiling.

Single compression architecture: The current JPEG standard has 44 modes,
many of which are application specific and not used by the majority of decoders.

Transmission in noisy environments: JPEG was created before wireless com-
munications became an everyday reality, therefore it does not acceptably handle
such an error prone channel

Computer-generated images: JPEG was optimized for natural images and does
not perform well on computer generated images.

Compound documents: JPEG shows poor performance when applied to bi-level
(text) imagery.

“Thus, the aim of the JPEG2000 working group is to develop a new image coding stan-
dard for different types of still images (bi-level, grayscale, color, multicomponent, hyper-
component), with different characteristics (natural, scientific, remote sensing, text rendered
graphics, compound, etc.), allowing different imaging models (client/server, realtime trans-
mission, image library archival, limited buffer and bandwidth resources, etc.) preferably
within a unified and integrated system. This coding system is intended for low bit-rate
applications and will exhibit rate-distortion and subjective image quality performance su-
perior to existing standards” [4].

JPEG2000 is being released in 11 parts as listed below [10]:

Part 1: Core coding system
Part 2: Extensions
Part 3: Motion JPEG2000
Part 4: Conformance
Part 5: Reference Software
Part 6: Compound image file format
Part 7: Has been abandoned
Part 8: JPSEC (security aspects)

3 INSIDE JPEG2000 5

Part 9: JPIP (interactive protocols and API)
Part 10: JP3D (volumetric imaging)
Part 11: JPWL (wireless applications)

Part 1, which is covered in the tutorial, is now published as an International Standard [11],
and the rest are in varying stages of completion.

3.2 Encoding

The JPEG2000 standard allows for both lossless and lossy compression. Because lossy
compression is more commonly used, it is described in the tutorial.

The JPEG2000 compression standard is composed of the stages shown in the flow graph
in Figure 3. An explanation of these stages make up the sub-sections of the tutorial’s
Encoding section.

Pre-Processing
Discrete Wavelet
Transform (DWT)

Uniform
Quantizer with

Deadzone

Embedded Block
Coding

Rate Control
Bit-stream

Organization

Original
Image Data

Compressed
Image Data

Figure 3: The JPEG2000 Encoding Process.

3.2.1 Pre-processing

In the first stage, pre-processing is performed. Pre-processing actually contains three sub-
stages, as shown in Figure 4. These steps must be performed so that the discrete wavelet
transformation can be properly performed.

Tiling Level Offset Irreversible Color
Transform (ICT)

Original
Image Data

Pre-processed
Image Data

Figure 4: Pre-processing sub-stages.

The image to be encoded might be larger than the amount of memory available to the
encoder. To solve this problem, JPEG2000 allows for optional tiling. In tiling, the in-
put image is partitioned into rectangular and non-overlapping tiles of equal size (except
possibly for those tiles at the image borders), as shown in Figure 5. Each tile is com-
pressed independently using its own set of specified compression parameters. The baboon
image [12] is used throughout the tutorial. Because the image is small, it would in reality

3 INSIDE JPEG2000 6

only have one tile. Thus, the rest of the tutorial explains the encoding process from the
perspective of a one tile image.

Figure 5: Example tiling of the 8-bit baboon image.

JPEG2000 expects its input sample data to have a nominal dynamic range centered about
zero. This expectation is necessary since JPEG2000 uses high-pass filtering. The level
offset pre-processing stage ensures that this expectation is met. If the original B-bit image
sample values are unsigned (non-negative) quantities, an offset of −2B−1 is added so that
the samples have a signed representation in the range −2B−1 ≤ x[n] < 2B−1. If the data is
already signed (centered around zero), no adjustment is performed.

At this point, it is important to understand the image model that JPEG2000 uses. From
the standard’s point of view, an image is composed of one or more components (up to 214),
and each component consists of a matrix of samples representing the luminosity of the
component at that point (Figure 6). The sample values are integer valued, can be either
signed or unsigned, and can have between 1 and 38 bits/sample.

Component 0
Component 1

Component 2

Component N-1

Figure 6: The component image model.

JPEG2000 compression is most commonly used to compress color images. There are sev-
eral ways to represent color images numerically, for example: RGB, YCbCr, YCM, and

3 INSIDE JPEG2000 7

HSB. However, color images are most commonly represented in RGB format. In RGB
format, the image is composed of three component planes, one each for the red, green,
and blue color components. When the discrete wavelet transformation is performed in
JPEG2000, each color layer is transformed independently. However, since Y, Cr and Cb

color components are less statistically dependent than R, G and B color components, they
independently compress better. Therefore, in JPEG2000 an irreversible color transform
(ICT) is performed to convert RGB data into YCrCb data according to the following:

Y
Cr

Cb

 =

0.299 0.586 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

R
G
B

 (1)

Figure 7: The ICT of the baboon image.

3.2.2 Discrete Wavelet Transformation

JPEG2000 uses a discrete wavelet decomposition (DWT) to decompose each image tile
into its high and low subbands as shown in Figure 8. The DWT is performed by filtering
each row and column of the pre-processed image tile with a high-pass and low-pass filter.
Because this process results in double the number of samples, the output from each filter is
downsampled by 2 (every other value is removed) so that the sample rate remains constant.
Also, it does not matter if the rows or the columns of the component matrix are filtered
first. The resulting DWT is the same.

3 INSIDE JPEG2000 8

h0

h1

x(n)
low-pass output

high-pass output

low-pass

high-pass

 2

 2

Figure 8: The DWT Structure [3].

Figure 9: DWT process for the Y component of the baboon image.

In JPEG2000, multiple stages of the DWT are performed. The number of stages performed
is implementation dependent; however, three stages are demonstrated in the tutorial.
Figure 10 shows the Stage 1 DWT for the Y component of the original pre-processed
image tile. The four quadrants are defined as follows:

LL: low subbands for row and column filtering
HL: high subbands for row filtering and low subbands for column filtering
LH: low subbands for row filtering and high subbands for columns filtering
HH: high subbands for row and column filtering

In stage 2 (Figure 11), the same process is repeated with the LL1 subband. Only the LL
subband is further transformed because the high subbands rarely contain any significant
samples. Finally, in Stage 3 the DWT is repeated a third time. Again, only the LL2
subband from Stage 2 is further filtered, as Figure 12 shows. JPEG2000 supports from 0
to 32 stages. For natural images, usually between 4 to 8 stages are used.

3 INSIDE JPEG2000 9

Figure 10: Stage 1 DWT of the 8-bit baboon image tile.

Figure 11: Stage 2 DWT of the 8-bit baboon image tile.

Figure 12: Stage 3 DWT of the 8-bit baboon image tile.

3 INSIDE JPEG2000 10

3.2.3 Quantization

The wavelet coefficients are quantized using a uniform quantizer with deadzone (Figure 13).
For each subband b, a basic quantizer step size ∆b is used to quantize all the coefficients
in that subband according to:

q = sign(y)

⌊ |y|
∆b

⌋
(2)

Where y is the input to the quantizer, sign(y) denotes the sign of y, ∆b is the step size,
and q is the resulting quantizer index. Deadzone means that the quantization range about
0 is 2∆b. This ensures that more zeros result.

sample
range

-s3 -s2 -s1 +s1 +s2 +s3

-i2 -i1 0 +i1 +i2

0

quantizer
index
range

Figure 13: Deadzone quantizer structure.

Quantization can best be explained via an example. Given a quantizer step size of 10 and
an encoder input value of -21.82, the quantizer index is determined as shown in equation 3
and Figure 14.

Quantizer Index = −
⌊
21.82

10

⌋
= −2 (3)

Figure 14: Example calculation of the quantizer index

3 INSIDE JPEG2000 11

3.2.4 Embedded Block Coding

Before embedded block coding is discussed, the concept of code blocks is explained because
they are used in embedded block coding. In JPEG2000, before coding is performed, the
subbands of each tile are further partitioned into relatively small code-blocks (e.g. 64× 64
or 32×32 samples) such that code blocks from a subband have the same size. Code-blocks
are used to permit a flexible bit stream organization, which is discussed in Section 3.2.6.
An example of a code-block partitioning is given in Figure 15.

Figure 15: Example division of subbands into code-blocks.

In JPEG2000, each code-block is encoded independently. The coding algorithm scans
through the matrix of code block quantization indices in a striped manner as shown in
Figure 16. The code-block is partitioned into stripes with a nominal height of four samples.
Then, the stripes are scanned from top to bottom, and the columns within a stripe are
scanned from left to right.

...

...

...
...

...

4 Rows

Figure 16: Stripe scan order within a block [2].

It can also occur that the N most significant bit-planes (MSB-planes) contain no 1s.
Therefore, on a per code-block basis, the MSB-plane is set to the top most bit-plane
which contains at least one 1. The number of bit-planes which are skipped is then encoded
in a header.

The encoding algorithm used is called embedded block coding. The quantization indices of
each code-block are not encoded at the symbol level but at the bit-plane level. A context-
based adaptive binary arithmetic coder is used to compress each bit-plane in a sequence of
three coding passes: significance propagation, magnitude refinement, and clean-up. In the

3 INSIDE JPEG2000 12

MSB-plane only the clean-up pass is performed. Then for each bit-plane, proceeding to
the least significant bit-plane (LSB-plane), each of the three coding passes are performed.
The psuedocode for each coding pass, as stated in [1], is given in page 25. However, before
the coding passes are explained, the concept of context-significance must be covered.

A bit is typically “significant” if it is a 1. However, JPEG2000 utilizes context-significance,
which means that a bit at position j which is insignificant (zero) is actually context-
significant if the context, Ksig[j], is greater than zero. The context is determined through
a complex relationship between Kv[j], Kh[j], and Kd[j], as shown in equations 4, 5, and 6
and Figure 17, where σ[] is the significance of the bit at position j. It is true that Kv[j] = 0,
Kh[j] = 0, and Kd[j] = 0 if and only if all 8 immediate neighbors are insignificant.
Also, bits which are outside the boundaries of the current code block are considered to be
insignificant for context calculation. The context of bit j is encoded along with the bit.

j r-2

jr-1

jr

jr+1

jr+2

R
ow

s

jc-2 j c-1 j c j c+1 j c+2

Columns

Kh[j]Kv[j]current sample

Kd[j]

Figure 17: Calculation of significance coding contexts [1].

Kh[j] = σ[jr, jc − 1] + σ[jr, jc + 1] (4)

Kv[j] = σ[jr − 1, jc] + σ[jr + 1, jc] (5)

Kd[j] =
∑

kr=±1

∑
kc=±1

σ[jr + kr, jc + kc] (6)

For the three coding passes the following variables are used:

j = current position being processed
ν[j] = bit value of j
σ[j] =significance of j
π[j] = membership of j to the significance propagation coding pass

3 INSIDE JPEG2000 13

In the significance propagation pass, if a bit is insignificant and context-significant, then it
is encoded along with its context. If the bit is at the same time a 1, its significance flag is
set to 1 and the sign of the symbol is encoded. Finally, π[j] is set to reflect whether or not
bit j now belongs to the significance propagation pass. This is information is necessary for
the next coding pass.

Significance Propagation Pass

For each location j
If σ[j] = 0 and Ksig[j] > 0

MQ-Encode(ν[j], Ksig[j])
If ν[j] = 1

σ[j]← 1
EncodeSign()

π[j]← 1
else

π[j]← 0

In the magnitude refinement coding pass, those samples which first became significant in
a previous bit-plane are encoded; i.e. those samples which are significant (σ[j] = 1) and
were not coded in the significance propagation pass (π[j] = 0). Instead of encoding the
context, Ksig, with the bit, the magnitude refinement coding context, Kmag, is encoded.
The value of Kmag is based on a relationship between Ksig and the value of the significance
state variable “delayed” by one bit-plane, σ̃[j].

Magnitude Refinement Pass

For each location j
If σ[j] = 1 and π[j] = 0

Find Kmag[j] from σ̃[j] and Ksig[j]
MQ-Encode(ν[j], Kmag[j])
σ̃[j]← σ[j]

The last coding pass is the clean-up pass. It codes all bits which were passed over by the
previous two coding passes. Since the remaining bits must be insignificant, a run mode
is introduced to reduce the total number of bits which must be coded. The run mode is
triggered when an entire stripe column contains insignificant bits with all neighbors also
being insignificant.

3 INSIDE JPEG2000 14

Clean-up Pass

If entering a full stripe column
r ← −1 (signifies not using run mode)
If [j1 + i, j2] = 0 for all i ∈ {0, 1, 2, 3} (enter run mode)

r ← 0
While r < 4 and ν[j1 + r, j2] = 0

r ← r + 1
If r = 4

MQ-Encode(0, Krun)
else (run interruption)

MQ-Encode(1, Krun)
MQ-Encode(b r

2
c, Kuni)

MQ-Encode(r mod 2, Kuni)
If σ[j] = 0 and π[j] = 0

If r ≥ 0
r ← r − 1 (no need to code significance)

else
MQ-Encode(ν[j], Ksig[j])

If ν[j] = 1
σ[j]← 1
EncodeSign()

At the same time as embedded block coding is being performed, the resulting bit streams
for each code-block are organized into quality layers. A quality layer is a collection of some
consecutive bit-plane coding passes from all code-blocks in all subbands and all compon-

Figure 18: Example quality layer distribution for stage 2 DWT with
subbands containing only one code-block.

3 INSIDE JPEG2000 15

ents, or simply stated, from each tile. Each code-block can contribute an arbitrary number
of bit-plane coding passes to a layer, but not all coding passes must be assigned to a quality
layer. Every additional layer successively increases the image quality.

Figure 18 shows an example of how the encoded data for each bit-plane in each code-
block can be organized into quality layers. Note the relationship between the amount of
important information in a code-block and how many quality layers are present in that
code-block.

3.2.5 Rate Control

Rate control is the process by which the code-stream is altered so that a target bit rate
can be reached. Once the entire image has been compressed, a post-processing operation
passes over all the compressed blocks and determines the extent to which each block’s
embedded bit stream should be truncated in order to achieve the target bit rate. The ideal
truncation strategy is one that minimizes distortion while still reaching the target bit-rate.

Each code-block, Bi, contains a finite number of truncation points, Zi + 1, having lengths
L

(z)
i such that

0 = L
(0)
i ≤ L

(1)
i ≤ . . . ≤ L

(zi)
i (7)

The overall reconstructed image distortion can be represented as a sum of the distortion
contributions from each of the code-blocks, where D

(z)
i is the distortion contributed by a

code-block. Since the code blocks are compressed independently, any bit stream truncation
policy can be used. If the overall length of the final compressed bit stream is constrained
by Lmax then any set of truncation points can be selected such that

∑
i

L
(zi)
i ≤ lmax (8)

and the overall distortion is minimized,

D =
∑

i

D
(zi)
i . (9)

• Which code-blocks are included in the packet

• The number of most significant all zero bit-planes skipped by the entropy encoder
for each newly included code-block

• The number of included coding passes for each code-block

• The length of included coded data for each code-block, potentially zero.

3 INSIDE JPEG2000 16

3.2.6 Bit-stream Organization

In bit stream organization, the compressed data from the bit-plane coding passes are first
separated into packets. One packet is generated for each precinct in a tile. A precinct is
essentially a grouping of code blocks within a resolution level. Precincts divide a resolution
level of a component into rectangles of size (Px, Py) containing 2Px × 2Py samples. Since
precincts cannot overlap code-blocks and must have dimensions that are exact powers of 2,
the precinct size restricts the subordinate code-block partitions. An example of precinct
partitioning is shown in Figure 19

Figure 19: Example precinct partitioning.

As previously stated, each precinct generates one packet, even if the packet is empty. A
packet is composed of a header and the compressed data. The header contains:

The organization of the code-stream can be seen in Figure 20

Then, the packets are multiplexed together in an ordered manner to form one code-stream.
In Part 1, there are five built-in ways to order the packets, called progressions, where
position refers to the precinct number:

Quality: layer, resolution, component, position
Resolution 1: resolution, layer, component, position
Resolution 2: resolution, position, component, layer
Position: position, component, resolution, layer
Component: component, position, resolution, layer

The sorting mechanisms are ordered from most significant to least significant. For example,
in the case of quality progression, packets are ordered first by layer, second by resolution,
third by component, and fourth by position. It is also possible for the progression order to
change arbitrarily in the code-stream. Additionally, in Part 2 of the standard it is possible
to specify user-defined progressions at the expense of additional overhead. Examples of
quality and resolution 1 progression are given interactively in the tutorial.

3 INSIDE JPEG2000 17

main
header

tile-
stream

tile-
stream

tile-
stream

EOC

.

.

.

(end of code-stream)

tile
header

pack-
stream

packet

packet

packet

packet
header

compressed
data.

.

.

Figure 20: Code-stream organization [1].

3.3 Decoding

The majority of the JPEG2000 sources do not explicitly explain how the JPEG2000 decoder
functions. This is because the decoder basically performs the opposite of the encoder, as
shown in Figure 21:

Embedded Block
Decoding

Inverse DWT Dequantization Inverse ICT
Compressed
Image Data

Almost
Original

Image Data

Figure 21: The JPEG2000 decoding process.

The code-stream is received by the decoder according to the progression order stated in
the header. The coefficients in the packets are then decoded and dequantized, and the
reverse-ICT is performed according to equation 10.

R
G
B

 =

1.0 0.0 1.4021
1.0 −0.3441 −0.7142
1.0 1.7718 0.0

Y
Cr

Cb

 (10)

In the case of irreversible compression, the decompression results in loss of data. The
resulting image is not exactly like the original. One main data loss point lies in rate
control and the resulting dequantization of a truncated bit stream.

JPEG2000 has the important feature that an image can be compressed in one way and
decompressed in many different ways (see “Compress once - decompress many ways” in
Section 3.4.1). The various practical implementations of this feature are shown in Figure 22.

3 INSIDE JPEG2000 18

The baboon image is decompressed in several ways depending on the displaying device and
available bit-rate.

Figure 22: Practical applications of the JPEG2000 standard.

3.4 Characteristics

The characteristics discussed below are all attributes that were not possessed by previous
encoding protocols.

3.4.1 Compress once - decompress many ways

In JPEG2000, the compressor decides the maximum resolution and maximum image quality
to be used, up to and including lossless. Any image quality or size can then be decompressed
from the resulting code-stream, up to and including the maximums chosen at compression
time. It is also possible to perform random access by decompressing only a certain region
of the image or a specific component of the image (e.g. the grayscale component of a
color image or overlay components containing text or graphics). Both can be performed
region by region with varying qualities and resolutions. It is important to note that in
each case it is possible to locate, extract, and decode the bytes required for the desired
image product. It is not necessary to decode the entire code-stream before extraction is
performed. In fact, the bytes extracted and decoded are usually identical to those that
would be obtained if only the desired image product was compressed in the first place. This
property of JPEG2000 is very important in that it prevents the build-up of compression
noise through repeated decompress/re-compress cycles.

3 INSIDE JPEG2000 19

3.4.2 Compressed image domain manipulation

Basic geometrical transformations (cropping, rotation, flipping, translation, and scaling)
can be applied easily to the compressed representation of the image. This eliminates the
need to decompress and re-compress the image for processing. This is illustrated through
two interactive examples, “flip vertically” and “rotate 90 degrees”. Each takes a diagram
depicting the DWT of a simple house stick-drawing and shows the result of performing the
operation.

3.4.3 Progression

Progressive transmission is very desirable when receiving images over slow communication
links. Through various code-stream organizations, progression by quality, resolution, spa-
tial location, and image component are supported in JPEG2000. User-defined progressions
are also supported. The various progression can be “mixed and matched” within a single
compressed code-stream. Additionally, if a code-stream has been transmitted or stored in
one particular progression order, it is also possible to rewrite the code-stream in a different
progression order without first decompressing the image. Because progression is covered
in detail in the bit-stream organization sub-section, it is not covered in any more detail
here (see Section 3.2.6).

3.4.4 Low bit-depth Imagery

Binary valued components can be compressed using JPEG2000. Lossless compression of
binary data can be performed by setting the bit depth to 1 and setting 0 levels of wavelet
transform. The result is that no wavelet transform is performed and the binary image is
treated as a single bit-plane at a single resolution. This bit-plane is then divided into code-
blocks and subjected to context dependent arithmetic coding. Scalability in quality and
resolution are sacrificed, but spatial random access is preserved. If the wavelet transform
is used for compressing binary images, scalability is preserved, but there is some loss in
compression efficiency over the “zero-level” case.

3.4.5 Region-of-interest encoding

In region-of-interest (ROI) coding, a chosen ROI is encoded with higher quality than
the background. The ROI can either be static or dynamic. Static ROIs are defined at
coding time, while dynamic ROIs are defined interactively by the user during a progressive
transmission.

ROIs are defined through a ROI mask (Figure 23). The ROI mask defines which wavelet
coefficients contribute to reconstructing the ROI. The ROI mask is indicated to the decoder

3 INSIDE JPEG2000 20

by shifting the mask coefficients up. In this way, the ROI is decoded before the background
in resolution and quality progressions, and the background is truncated in rate allocation
before the ROI. At the decoder end, after the ROI mask coefficients are detected they
are shifted back down. JPEG2000 allows two methods for up-shifting the ROI mask
coefficients: max-shift scaling and general scaling.

Figure 23: ROI mask example.

Max-shift scaling is supported in Part 1 of the standard. It shifts the ROI mask coefficients
up such that their LSB are higher than the most significant non-zero bit of all background
coefficients (Figure 24). Since the ROI mask is easy to find, it need not be sent to the
encoder, only the location and shape of the ROI. This method supports arbitrary ROI
shapes, but only one ROI per tile component is supported Also, almost all the background
data appears after the ROI has been completely decoded.

Figure 24: Max-shift ROI scaling [4].

Part 2 of the JPEG2000 standard supports general scaling. In general scaling the ROI
mask coefficients are shifted up an arbitrary number of bit-planes, as shown in Figure 25.

3 INSIDE JPEG2000 21

Figure 25: General ROI scaling [4].

This method allows for multiple ROIs in one tile component in that each ROI is up-shifted
by a different value. The up-shift value is recorded in the code-stream header for each
ROI. If the different ROIs overlap, the overlapped region is coded as belonging to the
highest quality ROI. Because this method does not result in an easily identifiable ROI
mask, it must be made available to the decoder. This method also only supports simple
ROI shapes: rectangles and ellipses.

3.4.6 Error resilience

One of the required features for JPEG2000 is improved error resilience. This feature be-
comes crucial as wireless communication becomes more prominent while wireless channels
remain highly error prone.

Because each code-block is independently encoded, errors are constrained to that code-
block; however, since variable length encoding is used, severe distortion can occur if the
error causes the bit stream to become unsynchronized. Additionally, packet headers are
interdependent and thus very fragile. Error resilience in JPEG2000 is achieved through
the ERTERM mode, the SEGMARK mode, or a combination of the two.

Normally, the encoder may terminate codeword segments in any manner which complies
to the standard. However, when the ERTERM mode is turned on this freedom is given
up, and a predictable termination policy must be followed. This makes it possible for
the decoder to exploit the properties of the predictable termination policy in order to
detect errors which may have been introduced into the bit stream or the length values

3 INSIDE JPEG2000 22

in the packet headers. Once a corrupted codeword segment has been detected, it and all
subsequent segments are then discarded.

When the SEGMARK mode is turned on (Figure 26), a string of four binary symbols must
be encoded at the end of each bit-plane. Specifically, the symbol string “1010” must be
delivered to the encoder using a unique non-adaptive context label (Kuni) used for coding
uniformly distributed symbols. These symbols complete the clean-up coding pass in each
bit-plane. The SEGMARK symbols are used to detect the presence of errors in that a
single error in a bit-plane is likely to corrupt at least one of the four binary symbols. The
decoder then discards the corrupted coding passes. In the simplest case, the truncated bit
stream is then decoded over again. This results in a lower quality rendition, but the loss
in quality is less objectionable than the visual artifacts produced by decoding a corrupted
bit stream.

Figure 26: SEGMARK mode [1].

REFERENCES 23

References

[1] D. S. Taubman and M. W. Marcellin, JPEG2000: Fundamentals, Standards and
Practice. Kluwer Academic Publishers, Boston, 2002.

[2] M. D. Adams, “The JPEG-2000 Still Image Compression Standard,” Tech. Rep.
N2412, ISO/IEC JTC 1/SC 29/WG 1, September 2001.

[3] M. Rabbani and D. Santa Cruz, “The JPEG2000 Still-Image Compression Stan-
dard.” Course given at the 2001 International Conference in Image Processing (ICIP),
October 2001. http://jj2000.epfl.ch/jj_publications/papers/011.pdf (as of
01.10.02).

[4] C. Christopoulos and A. Skodras, “JPEG2000 - The Next Generation Still-Image
Compression Standard.” Tutorial given at the IEEE International Conference on
Image Processing (ICIP), October 1999. http://www.etro.vub.ac.be/members/

christopoulos.charilaos/jpeg2000_cont%ributions.htm (as of 01.10.02).

[5] S. Saha, “Image Compression - from DCT to Wavalets: A Review,” ACM Cross-
roads Student Magazine, vol. 6.3, Spring 2000. http://www.acm.org/crossroads/

xrds6-3/sahaimgcoding.html (as of 01.10.02).

[6] R. Clark, “An Introduction to JPEG2000 and Watermarking.” Elysium Ltd.
http://www.jpeg.org/public/jpgintro.pdf (as of 01.10.02).

[7] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Compression Standard.
Kluwer Academic Publishers, 1993.

[8] Ricoh Innovations, Inc., “Compression with Reversible Embedded Wavelets (CREW)
Algorithm.” http://www.crc.ricoh.com/CREW/ (as of 01.10.02).

[9] ISO-14495-1 and ITU-T Recommendation T.87, “Information technology – Lossless
and near-lossless compression of continuous-tone still images,” 2000.

[10] Official JPEG2000 Homepage. http://www.jpeg.org/jpeg2000.html (as of
01.10.02).

[11] ISO/IEC 15444-1 and ITU-T Recommendation T.800, “Information technology –
JPEG 2000 image coding system,” 2002.

[12] University of Southern California, Signal and Image Processing Institute. The USC-
SIPI Image Database. http://sipi.usc.edu/services/database/Database.html

(as of 01.10.02).

