

dcc2000_jpeg2000_note.pdf
1

An Overview of JPEG-2000
Michael W. Marcellin1, Michael J. Gormish2, Ali Bilgin1, Martin P. Boliek2

This paper appeared in Proc. of IEEE Data Compression Conference, pp. 523-541, 2000. When JPEG
2000 Part I went from CD to FCD the term “packet partition location” was changed to “precinct.”

Abstract

JPEG-2000 is an emerging standard for still image compression. This paper
provides a brief history of the JPEG-2000 standardization process, an overview of the
standard, and some description of the capabilities provided by the standard. Part I of the
JPEG-2000 standard specifies the minimum compliant decoder, while Part II describes
optional, value-added extensions. Although the standard specifies only the decoder and
bitstream syntax, in this paper we describe JPEG-2000 from the point of view of
encoding. We take this approach, as we believe it is more amenable to a compact
description more easily understood by most readers.

1 Introduction

As digital imagery becomes more commonplace and of higher quality, there is the
need to manipulate more and more data. Thus, image compression must not only reduce
the necessary storage and bandwidth requirements, but also allow extraction for editing,
processing, and targeting particular devices and applications. The JPEG-2000 image
compression system has a rate-distortion advantage over the original JPEG. More
importantly, it also allows extraction of different resolutions, pixel fidelities, regions of
interest, components, and more, all from a single compressed bitstream. This allows an
application to manipulate or transmit only the essential information for any target device
from any JPEG 2000 compressed source image. JPEG-2000 has a long list of features, a
subset of which are:

• State-of-the-art low bit-rate compression performance
• Progressive transmission by quality, resolution, component, or spatial

locality
• Lossy and lossless compression (with lossless decompression available

naturally through all types of progression)
• Random (spatial) access to the bitstream
• Pan and zoom (with decompression of only a subset of the compressed data)
• Compressed domain processing (e.g., rotation and cropping)
• Region of interest coding by progression
• Limited memory implementations.

The JPEG-2000 project was motivated by Ricoh’s submission of the CREW
algorithm [1,2] to an earlier standardization effort for lossless and near-lossless
compression (now known as JPEG-LS). Although LOCO-I [3] was ultimately selected
as the basis for JPEG-LS, it was recognized that CREW provided a rich set of features

1 Department of ECE, University of Arizona, Tucson, AZ, {marcellin,bilgin}@ece.arizona.edu
2 Ricoh Silicon Valley, Menlo Park, CA, {gormish,boliek}@rsv.ricoh.com

2

worthy of a new standardization effort. Based on a proposal authored largely by Martin
Boliek [4], JPEG-2000 was approved as a new work item in 1996, and Boliek was named
as the project editor. Many of the ideas in JPEG-2000 are inspired by the work of [1, 5,
6, 7]. Also in 1996, Dr. Daniel Lee of Hewlett-Packard was named as the Convener of
ISO/IEC JTC1/SC29/WG1 (the Working Group charged with the development of JPEG-
2000, hereinafter referred to as simply WG1).

2 The JPEG-2000 Development Process

A Call for Technical Contributions was issued in March 1997 [8], requesting
compression technologies be submitted to an evaluation during the November 1997 WG1
meeting in Sydney, Australia. Further, WG1 released a CD-ROM containing 40 test
images to be processed and submitted for evaluation. For the evaluations, it was
stipulated that compressed bitstreams and decompressed imagery be submitted for six
different bitrates (ranging from 0.0625 to 2.0 bits per pixel (bpp)) and for lossless
encoding. Eastman Kodak computed quantitative metrics for all images and bit rates, and
conducted a subjective evaluation of 18 of the images (of various modalities) at three bit-
rates in Sydney using evaluators from among the WG1 meeting attendees. The imagery
from 24 algorithms was evaluated by ranking the perceived image quality of hard-copy
prints.

Although the performance of the top third of the submitted algorithms were
statistically close in the Sydney evaluation, the wavelet/trellis coded quantization
(WTCQ) algorithm, submitted by SAIC and the University of Arizona (SAIC/UA),
ranked first overall in both the subjective and objective evaluations. In the subjective
evaluation, WTCQ ranked first (averaged over the entire set of evaluated imagery) at
0.25 and 0.125 bpp, and second at 0.0625 bpp. In terms of RMS error averaged over all
images, WTCQ ranked first at each of the six bitrates. Based on these results, WTCQ
was selected as the reference JPEG-2000 algorithm at the conclusion of the meeting. It
was further decided that a series of “core experiments” would be conducted to evaluate
WTCQ and other techniques in terms of the JPEG-2000 desired features and in terms of
algorithm complexity.

Results from the first round of core experiments were presented at the March 1998
WG1 meeting in Geneva. Based on these experiments, it was decided to create a JPEG-
2000 “Verification Model” (VM) which would lead to a reference implementation of
JPEG-2000. The VM would be the software in which future rounds of core experiments
would be conducted, and the VM would be updated after each JPEG-2000 meeting based
on the results of core experiments. SAIC was appointed to develop and maintain the VM
software with Michael Marcellin as the head of the VM Ad Hoc Group. Eric Majani
(Canon-France) and Charis Christopoulos (Ericsson-Sweden) were also named as co-
editors of the standard at that time. Results from round 1 core experiments were selected
to modify WTCQ into the first release of the VM (VM 0).

2.1 The WTCQ Algorithm
The basic ingredients of the WTCQ algorithm are: the discrete wavelet transform,

TCQ [9, 10] (using step sizes chosen via a Lagrangian rate allocation procedure), and
binary arithmetic bitplane coding. The embedding principle [5, 6, 1, 7, 11, 12, 13],
asserts the encoded bitstream should be ordered in a way that maximally reduces MSE

3

per bit transmitted. In WTCQ embedding is provided by the bitplane coding similar to
that of [1]. The bitplane coding operates on TCQ indices (trellis quantized wavelet
coefficients) in a way that enables successive refinement. This is accomplished by
sending bitplanes in decreasing order from most- to least-significant. To exploit spatial
correlations within bitplanes, spatial context models are used. In general, the context can
be chosen within a subband and across subbands. The WTCQ bitplane coder avoids the
use of inter-subband contexts to maximize flexibility in scalable decoding, and to
facilitate parallel implementation. WTCQ also includes a “binary mode,” a classification
of coefficients, multiple decompositions (dyadic, packet, and others), and difference
images to provide lossless compression. A more complete description of WTCQ can be
found in [14].

2.2 VM 0 – VM 2
 Additions and modifications to VM 0 continued over several meetings, with

refinements contributed by many WG1 members. VM 2.0 supported user specified
floating point and integer transforms, as well as user specified decompositions (dyadic,
uniform, etc.). As a simpler alternative to the Lagrangian rate allocation, a fixed
quantization table (“Q-table”) was included. This is analogous to the current JPEG
standard [15]. When a Q-table is used, precise rate control can still be obtained by
truncating the (embedded) bitstream. In addition to TCQ, scalar quantization was
included in VM 2.

For integer wavelets, scalar quantization with step size 1 was employed (i.e., no
quantization), which allowed progression to lossless in the manner of CREW or SPIHT
[16] (using the S+P transform). Rate control for integer wavelets was accomplished by
embedding, and lossless compression was available naturally from the fully decoded
embedded bitstream. Other features, such as tiling, region of interest coding/decoding
(University of Maryland, Mitsubishi, and Ericsson), error resilience (Motorola-
Switzerland, TI, Sarnoff, UBC), approximate wavelet transforms with limited spatial
support (Motorola-Australia, Canon-France) were added to the VM, often from other
original contributions to the Sydney meeting. For complete description of these and other
technologies see [17].

Along with the additions described above, several refinements were made to the
bitplane coder. The major changes were the de-interleaving of bitplanes and
improvements to the context modeling. Within a given bitplane of each subband, the bits
were “de-interleaved” into three “sub-bitplanes” of the following types: 1) bits predicted
to be newly “significant,” 2) “refinement” bits, and 3) bits predicted to remain
“insignificant.” The idea of sub-bitplanes was first presented in [13] for use with
Golomb coding, and is motivated by rate-distortion concerns [11, 12]. It is desirable to
have the bits with the steepest rate-distortion slopes appear first in an embedded
bitstream.

The de-interleaving employed in VM 2 was adapted from [13] for use with
arithmetic coding, and did not use the parent index to predict significance. Thus, the VM
2 bitplane coder has no inter-subband dependencies such as those used in [13] and in the
zerotree based schemes of [5, 7]. This allows for a certain amount of parallelism and
enables the type of progression present in the encoded bitstream to be changed without
decoding (see the description of parsing in Section 5).

4

As in VM 0, all coding was carried out using context dependent binary arithmetic
coding. The particular arithmetic coder employed is described in [18]. It should be noted
that, when encoding a particular bit, neither significance prediction, nor context modeling
stages can use any information that would not be available at the decoder when that bit
needs to be decoded. Thus, for those wavelet coefficients that are non-causal with
respect to the scan pattern, only information from more significant bitplanes is used.

2.3 VM 3 – VM 5
At the November 1998 WG1 meeting in Los Angeles, David Taubman (then at

Hewlett-Packard) presented EBCOT (embedded block coding with optimized truncation)
[19, 20]. EBCOT included the idea of dividing each subband into rectangular blocks of
coefficients and performing the bitplane coding independently on these “code-blocks”
(rather than entire subbands as in previous VMs). This partitioning reduces memory
requirements in both hardware and software implementations, as well as providing a
certain degree of (spatial) random access to the bitstream. EBCOT also included an
efficient syntax for forming the sub-bitplane data of multiple code-blocks into “packets,”
which taken together form quality “layers.”

Tremendous flexibility in the formation of packets and layers is left to the
implementer of an encoder. The default policy in the VM encoder is to place in each
layer the sub-bitplanes (among all sub-bitplanes not yet included in previous layers) with
steepest rate-distortion slope (as estimated in the encoder). This policy aims to minimize
the MSE at each point in the embedded bitstream and improves the MSE performance
over a simple “round robin” ordering as implemented in VM 2. Other policies have been
explored as well. One particularly interesting policy modifies the distortion estimates of
each sub-bitplane consistent with visual masking properties. Thus, code-blocks in
regions where more distortion can be tolerated (visually) are de-emphasized in the
bitstream formation. Even when this masking policy is employed, progressive
transmission eventually results in lossless decompression (when integer wavelets are
employed). The policy has little effect on the ultimate lossless file size (bitrate), but can
have dramatic impact on the visual quality for partial (embedded) decoding at lower
rates.

EBCOT was adopted for inclusion in VM 3 at the Los Angeles meeting. Taubman
re-implemented the entire VM in an object-oriented manner at that time. In subsequent
VM’s, the block coder was refined to include only 3 passes (EBCOT used 4) similar to
those of VM 2. Subsequent VM’s were also modified with more “hardware friendly”
context modeling, and scan pattern (within code-blocks) [21].

At the March 1999 WG1 meeting in Korea, the MQ-coder (submitted by
Mitsubishi) was adopted as the arithmetic coder for JPEG-2000. This coder is
functionally similar to the QM-coder available as an option in the original JPEG standard.
The MQ-coder has some useful bitstream creation properties, is used in the JBIG-2
standard, and should be available on a royalty and fee free basis for ISO standards. In
fact, one goal of WG1 has been the creation of a Part I which could be used entirely on a
royalty and fee free basis. It is felt this is essential for the standard to gain wide
acceptance as an interchange format (witness the large difference in utilization of JPEG
with Huffman coding and JPEG with arithmetic coding).

At the same time as changes were being made to the internal coding algorithms, the
syntax wrapping the compressed data was developed. This syntax is made up of a

5

sequence of markers, compatible with those of the original JPEG [15], with features
added by Ricoh and Aerospace Corporation to allow the identification of relevant
portions of the compressed data.

While the bitstream syntax provides all the data necessary for the decoder to
recreate the input pixel array, applications often require additional information not
present in the bitstream. One Annex of the JPEG-2000 standard contains an optional
minimal file format to include information such as the color space of the “pixels” and
intellectual property (copyright) information for the image. Hopefully the inclusion of
this annex will prevent the proliferation of proprietary file formats that happened with the
original JPEG. This optional file format is extensible and Part II will define storage of
many additional types of “metadata.”

3 Final Standardization

The document describing the JPEG-2000 Part I decoder reached “Committee
Draft” (CD) status in December 1999. Although technical changes are still possible, they
now require support of a “national body.” In April 2000 the draft may obtain “Final
Committee Draft” (FCD) form, and if work proceeds at the maximum possible rate under
ISO rules, “Final Draft International Standard” (FDIS) in August 2000, and finally JPEG-
2000 may become an “International Standard” (IS) in December 2000. Part II is
scheduled to be eight months behind Part I, becoming an International Standard in July
2001.

It is worth noting that the standard specifies only the decoder and bitstream syntax.
Although informative descriptions of some encoding functions will be provided in the
text of the standard, there are no requirements that the encoder perform compression in
any prescribed manner. This leaves room for future innovations in encoder
implementations.

For the purpose of interchange it is important to have a standard with a limited
number of options, so decoders in browsers, printers, cameras, or PDAs can be counted
on to implement all the options and an encoded image will be displayable by all devices.
For this reason some choices have been limited in the standard. Part I, therefore, will
describe the minimal decoder required for JPEG-2000, which should be used to provide
maximum interchange. However, there are applications for image compression where
interchange is less important than other requirements (e.g., ability to handle a particular
type of data). Part II will consist of optional “value added” technologies, not required of
all implementations. Of course, images encoded with Part II technologies usually will
not be decodable by Part I decoders. Table 1 lists the various components of the
compression system and the extensions likely for Part II. For example, Part I will require
one floating-point wavelet (9,7), and one integer wavelet (3,5), while Part II will allow
multiple wavelets including “user defined.”

Other items which are important for the adoption of JPEG-2000 did not fit properly
in either the “minimum decoder” of Part I, or the “extensions” of Part II. Motion JPEG
has been a commonly used method of editing high quality video (e.g., in production
studios) without the existence of an ISO standard. Part III of JPEG-2000 will be “Motion
JPEG-2000.” Part II of the original JPEG was a set of compliance tests to ensure quality
implementation of the standard. WG1 plans to provide JPEG-2000 compliance tests in
Part IV. Finally, the key to success of the JPEG-2000 standard may well be the

6

availability of high quality free software. The JJ2000 group (Cannon France, Ericsson,
EPFL) has produced a Java implementation for standard promotion, and UBC has
announced the intention to release C software. WG1 has started a Part V of the standard
for encouraging development of free software.

Table 1: Division of the Standard Between Part I and Part II.

4 JPEG-2000 Coding Engine

4.1 Tiles and Component Transforms
In what follows, we provide a description of the JPEG-2000 coding engine. Our

goal is to illuminate the key concepts at a sufficient level to impart a fundamental
understanding of the algorithm without dwelling too much on details. In the standard, an
image can consist of multiple components (e.g., RGB) each possibly subsampled by a
different factor. Conceptually, the first algorithmic step is to divide the image into
rectangular, non-overlapping tiles on a regular grid. Arbitrary tile sizes are allowed, up
to and including the entire image (i.e., no tiles). Components with different subsampling
factors are tiled with respect to a high resolution grid, which ensures spatial consistency
of the resulting tile-components. Each tile of a component must be of the same size, with
the exception of tiles around the border (all four sides) of the image.

When encoding an image having multiple components such as RGB, a point-wise
decorrelating transform may be applied across the components. Two transforms are

Technology Part I Part II
Bitstream Fixed and variable length markers. New markers can be skipped by a

Part I decoder.
File format Optional. Provide intellectual property

(e.g. copyright) information, color or
tone-space for image, general method
of including metadata.

Allow metadata to be interleaved
with coded data. Define types of
metadata.

Arithmetic Coder MQ-coder. Same?
Coefficient Modeling Independent coding of fixed size

blocks within subbands. Division of
coefficients into 3 sub-bitplanes.
Grouping of sub-bitplanes into
“layers.”

Special models for binary or graphic
data?

Quantization Scalar quantizer with dead-zone,
truncation of code-blocks.

Trellis Coded Quantization.

Transformation Low complexity (5,3) and high
performance Daubechies (9,7). Mallat
decomposition.

Many more filters, perhaps “user-
defined” filters. Packet and other
decompositions.

Component
decorrelation

Reversible component transform
(RCT), YCrCb transform.

Arbitrary point transform or
reversible wavelet transform across
components.

Error Resilience Resynchronization markers. Fixed length entropy coder, repeated
headers.

Bit-stream Ordering Progressive by tile-part, then SNR, or
resolution, or component.

Out of order tile-parts.

7

defined in Part I of the standard: 1) the YCrCb transform commonly used with original
JPEG images, and 2) the Reversible Component Transform (RCT) which provides
similar decorrelation, but allows lossless reconstruction of all components [22]. After
this transform all components are treated independently (although different quantization
is possible with each component, as well as joint rate allocation across components). For
the sake of simplicity, we now describe the JPEG-2000 algorithm with respect to a single
tile of a single component (e.g., gray level) image.

4.2 Partitions, Transforms, and Quantization
Given a tile, an L-level dyadic (pyramidal) wavelet transform is performed using

either the (9,7) floating point wavelet [23], or the (5,3) integer wavelet [24]. Progression
is possible with either wavelet but the (5,3) must be used if it is desired to progress to a
lossless representation. Although we describe the algorithm here in terms of processing
on an entire tile, more memory efficient implementations are possible using sliding-
window [25] or block-based transform techniques [26, 27].

From an L-level transform it is natural to reconstruct images at L+1 different
“sizes,” or “resolutions.” We refer to the lowest frequency subband (LFS) as resolution
0, and the original image as resolution L. The LFS is also referred to as the resolution-
level 0 subband. The three subbands needed to augment resolution j into resolution j+1
are referred to collectively as resolution-level j+1 subbands.

After transformation, all wavelet coefficients are subjected to uniform scalar
quantization employing a fixed dead-zone about the origin. This is accomplished by
dividing the magnitude of each coefficient by a quantization step size and rounding
down. One quantization step size is allowed per subband. These step sizes can be chosen
in a way to achieve a given level of “quality” (as in many implementations of JPEG), or
perhaps in some iterative fashion, to achieve a fixed rate. The default behavior of the
VM is to quantize each coefficient rather finely, and rely on subsequent truncation of
embedded bitstreams to achieve precise rate control. The standard places no requirement
on the method used to select quantization step sizes. When the integer wavelet transform
is employed, the quantization step size is essentially set to 1.0 (i.e., no quantization). In
this case, precise rate control (or even fixed quality) is achieved through truncation of
embedded bitstreams.

After quantization, each subband is subjected to a “packet partition.” This packet
partition divides each subband into regular non-overlapping rectangles. Three spatially
consistent rectangles (one from each subband at a given resolution level) comprise a
packet partition location. The packet partition provides a medium-grain level of spatial
locality in the bitstream for the purpose of memory efficient implementations, streaming,
and (spatial) random access to the bitstream, at a finer granularity than that provided by
tiles. Finally, code-blocks are obtained by dividing each packet partition location into
regular non-overlapping rectangles. The code-blocks are then the fundamental entities
for the purpose of entropy coding.

To recap, an image is divided into tiles and each tile is transformed. The subbands
(of a tile) are divided into packet partition locations. Finally, each packet partition
location is divided into code-blocks. This situation is illustrated in Figure 1. This figure
depicts a packet partition of the subbands at resolution level 2 (of a 3-level dyadic
wavelet transform of one tile). Also shown is the division of one packet partition location
into twelve code-blocks.

8

4.3 Block Coding
Entropy coding is performed independently on each code-block. This coding is

carried out as context-dependent, binary, arithmetic coding of bitplanes. Consider a
quantized code-block to be an array of integers in sign-magnitude representation, then
consider a sequence of binary arrays with one bit from each coefficient. The first such
array contains the most significant bit (MSB) of all the magnitudes. The second array
contains the next MSB of all the magnitudes, continuing in this fashion until the final
array which consists of the least significant bits of all the magnitudes. These binary
arrays are referred to as bitplanes.

The number of bitplanes in a given code-block (starting from the MSB) which are
identically zero is signaled as side information, as described later. So, starting from the
first bitplane having at least a single 1, each bitplane is encoded in three passes (referred
to as sub-bitplanes). The scan pattern followed for the coding of bitplanes, within each
code-block (in all subbands), is shown in Figure 2. This scan pattern is basically a
column-wise raster within stripes of height four. At the end of each stripe, scanning
continues at the beginning (top-left) of the next stripe, until an entire bitplane (of a code-
block) has been scanned.

The prescribed scan is followed in each of the three coding passes. The decision as
to which pass a given bit is coded in is made based on the “significance” of that bit’s
location and the significance of neighboring locations. A location is considered
significant if a 1 has been coded for that location (quantized coefficient) in the current or
previous bitplanes.

The first pass in a new bitplane is called the significance propagation pass. A bit is
coded in this pass if its location is not significant, but at least one of its eight-connected
neighbors is significant. If a bit is coded in this pass, and the value of that bit is 1, its
location is marked as significant for the purpose of coding subsequent bits in the current

0 1

2 3

4
6 7

8 9
10 11

5

Figure 1: Twelve code-blocks of one packet partition location at resolution level 2
of a 3-level dyadic wavelet transform. The packet partition location is
emphasized by heavy lines.

9

and subsequent bitplanes. Also, the sign bit is coded immediately after the 1 bit just
coded. The second pass is the magnitude refinement pass. In this pass, all bits from
locations that became significant in a previous bitplane are coded. The third and final
pass is the clean-up pass, which takes care of any bits not coded in the first two passes.

Table 2 shows an example of the coding order for the quantized coefficients of one
4-sample column in the scan. This example assumes all neighbors not included in the
table are identically zero, and indicates in which pass each bit is coded. As mentioned
above, the sign bit is coded after the initial 1 bit and is indicated in the table by the + or –
sign. Note that the very first pass in a new block is always a clean-up pass because there
can be no predicted significant, or refinement bits.

Table 2: Example of Sub-Bitplane Coding Order.

All coding is done using context dependent binary arithmetic coding. The
arithmetic coder employed is the MQ-coder as specified in the JBIG-2 standard [28].
The coding for the first and third passes is identical, with the exception that run coding is
sometimes employed in the third pass. Run coding occurs when all four locations in a
column of the scan are insignificant and each has only insignificant neighbors. A single
bit is then coded to indicate whether the column is identically zero or not. If not, the
length of the zero run (0 to 3) is coded, reverting to the “normal” bit-by-bit coding for the
location immediately following the 1 that terminated the zero run. The sign and
magnitude refinement bits are also coded using contexts designed specifically for that
purpose.

Coefficient Value
Coding Pass 10 1 3 -7
Clean-up 1+ 0 0 0
Significance 0
Refinement 0
Clean-up 0 1-
Significance 0 1+
Refinement 1 1
Clean-up
Significance 1+
Refinement 0 1 1
Clean-up

Figure 2: Scan pattern for bitplane coding.

10

For brevity, the computation to determine each context is not included here.
However, unlike JBIG or JBIG-2 which use thousands of contexts, JPEG-2000 uses no
more than nine contexts to code any given type of bit (i.e., significance, refinement, etc.).
This allows extremely rapid probability adaptation and decreases the cost of
independently coded segments.

Before leaving this section, we mention a few issues regarding the arithmetic
coding. The context models are always reinitialized at the beginning of each code-block.
Similarly, the arithmetic codeword is always terminated at the end of each code-block
(i.e., once, at the end of the last sub-bitplane). The best performance is obtained when
these are the only reinitializations/terminations. It is allowable however, to
reset/terminate at the beginning/end of every sub-bitplane within a code-block. This
frequent reset/termination, plus optionally restricting context formation to include data
from only the current and previous “scan-stripes” is sufficient to enable parallel encoding
of all sub-bitplanes within a code-block (of course, parallel encoding of the code-blocks
themselves is always possible). Reset/termination strategies can also impact the error
resilience of the decoder. Finally, “selective arithmetic coder bypass” can be used to
significantly reduce the number of symbols arithmetically coded. In this mode, the third
coding pass of every bitplane employs arithmetic coding, as before. However, after the
fourth bitplane is coded, the first and second passes are included as raw (uncompressed)
data. For natural imagery, all of these modifications produce a surprisingly small loss in
compression efficiency. For other imagery types (graphics, compound documents, etc.)
significant losses can be observed.

4.4 Packets and Layers
The compressed bitstreams associated with some number of sub-bitplanes from

each code-block in a packet partition location are collected together to form the body of a
“packet.” The body of a packet is preceded by a packet header. The packet header
contains: block inclusion information for each block in the packet (some blocks will have
no coded data in any given packet); the number of completely zero bitplanes for each
block; the number of sub-bitplanes included for each code-block; and the number of
bytes used to store the coded sub-bitplanes of each block. It should be noted that the
header information is coded in an efficient and embedded manner itself. The data
contained in a packet header supplements data obtained from previous packet headers
(within the same packet partition location) in a way to just enable decoding of the current
packet. A discussion of this process is beyond the scope of this paper, for more details
see [20].

Figure 3 depicts one packet for the packet partition location illustrated in Figure 1.
Note that each of the twelve code-blocks can contribute a different number of sub-
bitplanes (possibly zero) to the packet, and empty packet bodies are allowed.

Packet
Header

n0 sub-bitplanes
from code-block 0

n1 sub-bitplanes
from code-block 1

n11 sub-bitplanes
from code-block 11

Figure 3: The composition of one packet for the packet partition location of
Figure 1.

11

A packet can be interpreted as one quality increment for one resolution level at one
spatial location (packet partition locations correspond roughly to spatial locations). A
“layer” is then a collection of packets: one from each packet partition location of each
resolution level. A layer then can be interpreted as one quality increment for the entire
image at full resolution.

As noted above, there is no restriction on the number of sub-bitplanes contributed
by each code-block to a given packet (layer). Thus, an encoder can format packets for a
variety of purposes. For instance, consider the case when progression and the features
provided by the packet partition are not of interest. The packet partitions can be set
larger than the subbands (turned off), and all sub-bitplanes from all blocks can be
included in a single packet per resolution layer. This provides the most efficient
compression performance, as the packet header information is minimized under this
scenario.

On the other hand, if progression by quality (embedding) is desired, a very small
number of sub-bitplanes can be included in each packet. The current VM supports a
generic scalable setting which includes approximately 50 layers. In this case, on average,
less than 1 sub-bitplane per code-block contribute to each packet. The strategy employed
by the VM (many others are possible) to form packets in the 50 layer case is based on
rate distortion theory. Each packet is constructed to include all sub-bitplanes with
(estimated) rate-distortion slope above a given threshold. This threshold is adjusted to
achieve the desired size (bit-rate) for the aggregate of all packets within the layer under
construction. This provides very fine-grained quality (rate) progression at the expense of
some additional overhead due to the (numerous) packet headers. Nevertheless, the VM
provides start-of-the-art compression performance even with 50 layers.

5 JPEG-2000 Bitstream

JPEG-2000 provides better rate-distortion performance, for any given rate, than
the original JPEG standard. However, the largest improvements are observed at very
high and very low bitrates. The improvements in the “near visually lossless” realm are
more modest (approximately 20%). Thus, widespread adoption of the new standard will
likely be based on the JPEG-2000 feature set. While JPEG provided different methods of
generating progressive bitstreams, with JPEG-2000 the progression is simply a matter of
the order the compressed bytes are stored in a file. Furthermore, the progression can be
changed, additional quantization can be done, or a server can respond only with the data
desired by a client, all without decoding the bitstream.

5.1 Progression
There are four basic dimensions of progression in the JPEG-2000 bitstream:

resolution, quality, spatial location, and component. Different types of progression are
achieved by the ordering of packets within the bitstream. Although tiles provide an
important mechanism for spatial progression, we assume in what follows (for simplicity)
that the image consists of a single tile. Each packet is then associated with one
component (say i), one layer (j), one resolution level (k), and one packet partition
location (m). A bitstream for a color image having the usual type of progression by SNR
(embedded) can be constructed by writing the packets using four nested loops. The
innermost loop is partition location, followed by resolution level, followed by

12

component, with the outermost loop being by layer. For progressive by resolution, the
order of nesting could be by partition location, layer, component, and resolution level.
Another interesting progression results from making the outermost loop in the nesting
“by component”. The progression can then be by SNR or resolution for a gray scale
image, with color information being added last. Similarly, spatial progression (or
streaming) can be achieved by placing the packet partition location outmost in the
nesting.

Finally, we note that the progression type can be changed at various places within
the bitstream. For example, it is possible to progress by SNR at a given (reduced)
resolution, then change to progression by SNR at a higher resolution. The packets
included in the bitstream will then be those needed in order for the higher resolution
subbands to “catch up” to the current layer of the lower resolution image. This change in
progression allows an icon to be displayed first, then a screen resolution image, and
finally if needed a print resolution image. With a typical 5 level transform, a 1024 by
1024 pixel print resolution image can provide a 256 by 256 screen resolution image, or a
32 by 32 icon. Progression by layer at each resolution allows the best possible image to
be displayed at each resolution while receiving data over a slow connection.

As discussed previously, each layer provides more bits of some of the wavelet
coefficients. The role of layers in providing progression by SNR has been detailed above.
However, layering is a much more powerful concept. The layers need not be designed
specifically for optimal SNR progression. For example, JPEG-2000 does not explicitly
define a method of subsampling color components as JPEG does (JPEG provides
subsampling on color components as a means to reduce computational complexity, and
because it provides quantization the human visual system is unlikely to notice). A JPEG-
2000 encoder, could place all the high frequency bands of the color components in the
last layer. Discarding the last layer, would then have the same effect as subsampling in
JPEG. A decoder which did not receive high frequency subbands could use a simplified
transform to save computational complexity. Layers are of course much more general
than subsampling. For images with significant color edges, some bits of the color
coefficients might be saved in earlier layers.

5.2 Parsing
Even though a JPEG-2000 bitstream can be stored in any reasonable desired order,

it can of course, only exist in one order at a time. However, because the coded data within
packets are identical regardless of the progression type chosen, it is trivial to change the
order, or to extract any required data from the bitstream.

The JPEG-2000 bitstream contains markers which identify the progression type of
the bitstream. Other markers may be written which store the length of every packet in the
bitstream. To change a bitstream from progressive by resolution to progressive by SNR, a
parser can read all the markers, change the type of progression in the markers, write the
lengths of the packets out in the new order, and write the packets themselves out in the
new order. There is no need to run the MQ-coder, the context model, or even decode the
block inclusion information. The complexity is only slightly higher than a pure copy
operation.

Likewise, when sending a color image to a grayscale printer, there is no point in
sending color information. A parser can read the markers from a 3 component file, and
write markers for a one component file, and discard all packets containing color

13

components. Similarly, while editing, a compressed image might be stored at 2 bpp or
even losslessly. If 2000 images are to be distributed on a CD-ROM, the layers
contributing the least to quality can be discarded across the image set, until the required
size is reached. Fifty layers provide enough information to extract almost any desired
bitrate at any desired resolution.

5.3 Spatial Accessibility
All of the operations described in the previous section as “parsing” from one file to

another file, could be performed on a server in response to requests, and the “parsed”
bitstream could be sent out over a serial line instead of writing a new file. However, in
addition to the whole image operations described previously, a client may wish to obtain
compressed data for only a particular spatial portion of an image.

If the regions of interest (ROI) are known in advance, i.e. at encode time, JPEG-
2000 provides additional methods of providing greater image quality in the foreground
vs. the background. First, all of the code-blocks which contain coefficients affecting the
ROI can be identified, and the bitplanes of those coefficients can be stored in higher
layers relative to other coefficients. Thus a layer progressive bitstream can naturally send
the ROI with higher quality (earlier in the bitstream) than the background. It should be
noted that fully lossless encoding of the entire image is still possible (with no loss in
compression efficiency over the case without ROI’s) when the (5,3) integer wavelet is
employed.

In addition, an explicit ROI can be defined and those coefficients which affect the
ROI can be shifted and coded as if they were in their own set of bitplanes. For an
encoder, this allows individual coefficients to be enhanced rather than entire code-blocks
(which must have the same set of sub-bitplanes included in each code-block without
explicit ROI). The decoder does not need to calculate which coefficients have been
shifted, it simply detects those coefficients which have bitplanes shifted by the encoder
and shifts them down to the level of the other coefficients before the inverse wavelet
transform. Fully lossless encoding is still possible, but with some loss in compression
efficiency.

If the regions of interest are not known at encode time, there are still several
methods for a “smart” server to provide exactly the right data to a client requesting a
specific region. The simplest method to provide access to spatial regions of the image
(which are not known at encode time) is for the encoder to tile the image. Since tiling
divides the image spatially any region desired by the client will lie within one or more
tiles. Tiles as small as 64 by 64 are useable although tiles this small increase the bitrate
noticeably. Tiles over 256 by 256 samples have almost no compression performance
impact (but offer less flexible access for small regions). All of the parsing operations
described previously on the whole image can selectively be applied to specific tiles.
Other tiles could be discarded, or transmitted at a much lower quality (more of the data
could be parsed). The bitstream contains the length of each tile (always in the tile header
and optionally grouped in the main header), so it is always possible to locate the desired
tiles with minimal complexity. Similarly, packet partitions can be extracted from the
bitstream for spatial access. The length information is still stored in the tile header, and
the data corresponding to a packet partition location are easily extracted. However, due
to the filter impulse response lengths, care must taken to extract all data required to
decode the region of interest.

14

Finer grain access is possible by parsing individual code-blocks. As in the case of
packet partition locations, it is necessary to determine which code-blocks affect which
pixel locations (a single pixel can effect four different code-blocks within each subband
and each resolution and each component). The correct packets containing these code-
blocks can be determined from the progression order information. Finally, the location of
the compressed data for the code-blocks can be determined by decoding the packet
headers. All of this is substantially more difficult than identifying entire tiles of interest,
but substantially easier than operating the arithmetic coder and context model to decode
the data.

5.4 Image Editing and Compression
All uncompressed tiled image formats allow regions of an image to be edited, and

only those tiles affected need to be rewritten to disk. With compression the compressed
size of an edited tile can change. Because of the flexibility in quantization in JPEG-2000
it is possible to truncate an edited tile to fit in the previous size. Alternatively, Part II will
allow out of order tiles within the bitstream so an edited tile could be rewritten at the end
of the bitstream

The main header of a JPEG-2000 bitstream of course contains the width and height
of the image, but it also contains a horizontal and vertical offset for the start of the image.
This allows the image to be cropped (to a sub-rectangle of the original) without requiring
a forward and inverse wavelet transform for recompression. In fact, all tiles inside the
newly cropped image need not be changed at all, and tiles on the edge of the new image
need only have the code-blocks on the edges recoded, and new tile headers and packet
headers written to the bitstream (no wavelet transform).

JPEG-2000 Part I allows 90, 180, and 270 degree rotations, and horizontal and
vertical flips of an image. These geometric manipulations can be performed without
inverse or forward wavelet transform. However, all code-blocks need to be re-coded in
the wavelet domain. Part II will allow the same transformations to be simply flagged in
the bitstream, and left for the decoder to perform as each code block is decompressed.

Finally, the integer nature of the (5,3) wavelet allows an image or portion of an
image to be compressed multiple times with the same quantization with no additional
loss. Unfortunately, this is only true if the decompressed sample values are not clipped
when they fall outside the full dynamic range (e.g., 0 to 255 for 8 bit images). If the
original image did not use the full dynamic range (for example 8 bit images using only 32
to 220), then this is not an issue. If clipping occurs, the cycle of clipping and
quantization can cause successive loss with each re-compression.

6 Performance

Figure 4 provides rate-distortion performance for two different JPEG modes, and
three different JPEG-2000 modes for the bike image (grayscale, 2048 by 2560) from the
SCID test set. The JPEG modes are progressive (P-DCT) and sequential (S-DCT) both
with optimized Huffman tables. The JPEG-2000 modes are single layer with the (9,7)
wavelet (S-9,7), six layer progressive with the (9,7) wavelet (P6-9,7), and 7 layer
progressive with the (3,5) wavelet (P7-3,5). The JPEG-2000 progressive modes have
been optimized for 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0 bpp and lossless for the 5x3 wavelet.
The JPEG progressive mode uses a combination of spectral refinement and successive
approximation.

15

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Rate (bpp)

P
S

N
R

 (
d

B
)

S-9,7
P6-9,7
P7-3,5
P-DCT
S-DCT

The JPEG-2000 results are significantly better than the JPEG results for all modes
and all bitrates on this image. Typically JPEG-2000 provides only a few dB improvement
from 0.5 to 1.0 bpp but substantial improvement below 0.25 bpp and above 1.5 bpp. It
should be noted that there are images for which JPEG performance is very close to the
(3,5) wavelet performance (at least between 0.5 and 1.5 bpp). It should also be noted that
the progression in JPEG was not optimized for this image, while the JPEG-2000
progressive modes are optimized for the image. However, this is a key advantage of the
progressive JPEG-2000 over progressive JPEG. With progressive JPEG the DCT
coefficients remain unchanged, but the encoding of those coefficients in any scan depend
on the previous stages, and the number of bits/coefficients coded in each stage. It is thus
extremely difficult to optimize over all the progression possibilities. For JPEG-2000 the
coded data bits do not change regardless of the method of progression or number of
stages used (The packet headers do change, but this is a second order effect). Thus it is
relatively easy to select the desired progression, for example by adding sub-bitplanes
which improve the R-D the most until the desired rate is achieved.

With JPEG-2000 the progressive performance is almost identical to the single layer
performance at the rates for which the progression was optimized. Once again, this is
because the coded data bits do not change. The slight difference is due solely to the
increased signaling cost for the additional layers (which changes the packet headers). It is
possible to provide “generic rate scalability” by using upwards of fifty layers. In this
case the “scallops” in the progressive curve disappear, but the overhead increases, so the
curve is always lower than the single layer points.

Figure 4: Rate-distortion performance for JPEG and JPEG 2000 on the SCID
bike image.

16

Although JPEG-2000 provides significantly lower distortion for the same bitrate,
the computational complexity is significantly higher. Current JPEG-2000 software
implementations run roughly a factor of three slower than optimized JPEG codecs. Speed
of JPEG-2000 code should increase over time with implementation optimization, but the
multi-pass bitplane context model and arithmetic entropy coder will prevent any software
implementation from reaching the speed JPEG obtains with the DCT and Huffman coder.

JPEG-2000 also requires more memory than sequential JPEG, but not as much as
might be expected. For conceptually simple implementations, encoders and decoders
buffer entire code-blocks, typically 64 by 64 for entropy coding. However, block based,
or sliding window implementations of the wavelet transform allow operation on just a
few code-blocks at a time. For highly optimized, pipelined, parallel implementations,
entropy coding can proceed without buffering of code-blocks. Short and wide codeblocks
(say 4 by 512) can also be employed to limit the memory requirements of the overall
system when sliding window wavelet transforms are employed.

Progressive JPEG-2000 can actually use less memory than progressive JPEG
(although at additional computational cost). For progressive JPEG decompression,
typically an entire coefficient buffer the size of the image is kept, coefficients are updated
as data is decoded and the inverse DCT is performed to update the screen. JPEG-2000
implementations can keep just the compressed data in memory and augment the
compressed data with new data, then decode a code-block, and perform the inverse
wavelet transform.

Table 3: Lossless performance of JPEG, JPEG-LS, and JPEG-2000.

Method Aerial2 Bike Barbara Cmpnd1
JPEG 5.589 4.980 5.663 2.478
JPEG-LS 5.286 4.356 4.863 1.242
JPEG-2000
(50 layers) 5.467 4.562 4.823 2.166
JPEG-2000
(One layer) 5.441 4.541 4.783 2.138

Table 3 shows the lossless performance of JPEG, JPEG-LS, and JPEG-2000. JPEG
uses a predictor and Huffman coding (no DCT). In each case the best of all predictors
has been used, and Huffman tables have been optimized. For primarily continuous-tone
imagery as in the Aerial2, Bike, and Barbara images, JPEG-2000 is close to JPEG-LS,
and substantially better than JPEG lossless. For images with text and graphics (2/3 of the
Cmpnd1 image contains only rendered text), JPEG-LS provides almost a factor of two
gain over JPEG lossless and JPEG-2000. Of course, the entire feature set is available for
even losslessly compressed JPEG-2000 imagery, while the other two algorithms can
provide only lossless raster-based decompression (for each tile). Hopefully, Part II of
JPEG-2000 will improve performance on compound imagery.

Table 4 shows the PSNR obtained with JPEG-2000 on the Bike image with various
encoding modes at 1.0 and 0.25 bpp. For comparison the image was first encoded with
512 by 512 tiles, 64 by 64 code-blocks, the (3,5) wavelet, and 7 rate-distortion optimized
layers from 0.0625, to 2.0 bpp, and lossless. The remaining lines in the table show slight
modifications from this reference. Using 128 by 128 tiles has a noticeable affect,
especially at lower bitrates. But the 512 by 512 tiles had little impact over no tiles at all.

17

Reducing the code-block size also has a noticeable impact on compression, but it does
not vary with bitrate. The (9,7) wavelet and non-SNR-progressive (one layer) encodings
provide a significant performance increase. Providing complete rate scalability (50
layers) has a slight cost. Finally, values for sequential JPEG with optimized Huffman
tables are in the last line.

Table 4: Performance Effects of Encoder Options on Bike Image.

PSNR (dB)Encode Method
1.0 bpp 0.25 bpp

Reference 37.27 29.00
128 by 128 Tiles 36.81 28.16
No Tiles 37.31 29.08
32 by 32 Code-blocks 37.10 28.86
50 Layers 37.17 28.81
One Layer 37.73 29.19
(9,7) Wavelet 38.05 29.55
JPEG 34.37 27.21

7 Conclusion

The definition of JPEG-2000 is of course the standard. ISO sells copies of the
specification but only after the “International Standard” stage is reached. Drafts of the
standard and much more information are available by joining the WG1 committee or the
appropriate national body responsible for sending delegates. Hopefully, free software will
soon be available so the features can be tested by anyone.

JPEG-2000 is unlikely to replace JPEG in low complexity applications at bitrates in
the range where JPEG performs well. However, for applications requiring either higher
quality or lower bitrates, or any of the features provided, JPEG-2000 should be a
welcome standard.

References

1. A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, “CREW: Compression with
reversible embedded wavelets,” Proc. of IEEE Data Compression Conference,
Snowbird, Utah, pp. 212-221, March 1995.

2. M. Boliek, M. Gormish, E. L. Schwartz, and A. F. Keith, “Decoding compression
with reversible embedded wavelets (CREW) codestreams,” Journal of Electronic
Imaging, vol. 7, no. 3, pp. 402-209, July 1998.

3. M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image
compression algorithm: principles and standardization into JPEG-LS,” submitted to
IEEE Trans. on Image Proc.

4. M. Boliek, “New work item proposal: JPEG2000 image coding system,” ISO/IEC
JTC1/SC 29/WG1 N390, June 1996.

5. J. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE
Trans. on Sig. Proc., vol. 41, no. 12, pp. 3445-3462, Dec. 1993.

6. D. Taubman and A. Zakhor, “Multirate 3-D subband coding of video,” IEEE Trans.

18

on Image Proc., vol. 3, no. 5, pp. 572-588, Sept. 1994.
7. A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set

partitioning in hierarchical trees,” IEEE Trans. on Circuits and Systems for Video
Tech., vol. 6, no. 3, pp. 243-250, June 1996.

8. “Call for contributions for JPEG 2000 (JTC 1.29.14, 15444): image coding system,”
ISO/IEC JTC1/SC 29/WG1 N505, March 1997.

9. M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of memoryless and
Gauss-Markov sources,” IEEE Trans. on Commun., vol. 38, no. 1, pp. 82-93, Jan
1990.

10. J. H. Kasner, M. W. Marcellin, B. R. Hunt, “Universal trellis coded quantization,”
IEEE Trans. on Image Proc., vol. 8, no. 12, pp. 1677-1687, Dec. 1999.

11. J. Li, P. Cheng, and C.-C. J. Kuo, “On the improvements of embedded zerotree
wavelet (EZW) coding,” in Proc. SPIE, Vis. Comm. and Image Proc., vol. 2601, pp.
1490-1501, Taipei, Taiwan, May 1995.

12. J. Li and S. Lei, “Rate-distortion optimized embedding,” Proc. of Picture Coding
Symposium, pp. 201-206, 1997.

13. E. Ordentlich, M. Weinberger, and G. Seroussi, “A low-complexity modeling
approach for embedded coding of wavelet coefficients,” Proc. of IEEE Data
Compression Conf., pp. 408-417, 1998.

14. P. J. Sementilli, A. Bilgin, J. H. Kasner, M. W. Marcellin, “Wavelet TCQ: submission
to JPEG-2000,” Proc. of SPIE, Appl. of Digital Image Proc., pp. 2-12, July 1998.

15. W. B. Pennebaker and J. L. Mitchell, JPEG still image data compression standard,
Van Nostrand Reinhold, New York, 1993.

16. A. Said and W. A. Pearlman, “An image multiresolution representation for lossless
and lossy compression,” IEEE Trans. Image Proc., vol. 5, no. 9, pp. 1303-1310, Sept.
1996.

17. C. Christopoulos, “JPEG-2000 verification model 2.0 (technical description),”
ISO/IEC JTC 1/SC 29/WG 1 N988, Oct. 1998.

18. D. Speck, “New options in radix-255 arithmetic coder,” ISO/IEC JTC1/SC 29/WG1
N482R, March 1997.

19. D. Taubman, “Report on coding experiment codeff22: EBCOT (Embedded block
coding with optimized truncation),” ISO/IEC JTC1/SC 29/WG1 N1020R, October
1998.

20. D. Taubman, “High performance scalable image compression with EBCOT,” to
appear in IEEE Trans. on Image Proc.

21. SAIC/UA, HP/UNSW, HP, WSU, Kodak, “Report on core experiments codEff4,
codEff5 and codEff7: reduced complexity entropy coding,” ISO/IEC JTC1/SC
29/WG1 N1312, June 1999.

22. M. J. Gormish, E. L. Schwartz, A. Keith, M. Boliek, and A. Zandi, “Lossless and
nearly lossless compression for high quality images,” Proc. of SPIE, Very High
Resolution and Quality Imaging II, pp. 62-70, February 1997.

23. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using
wavelet transform,” IEEE Trans. on Image Proc., vol. 1, no. 2, pp 205-220, Apr.
1992.

24. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet transforms that
map integers to integers,” Journal of Appl. and Comp. Harmon. Analy., vol. 5, pp.

19

332-369, 1998.
25. Chrysafis and A. Ortega, “Line based, reduced memory, wavelet image

compression,” Proc. of IEEE Data Compression Conf., pp. 398-407, 1998.
26. Motorola Australia and UBC, “Report on core experiment codeff1: complexity

reduction of SSWT,” ISO/IEC JTC1/SC 29/WG1 N1003, November 1998.
27. Canon Research France, Motorola Australia and Hewlett Packard, “Report on Core

Experiment CodEff11: Reduced overlap in SSWT,” ISO/IEC JTC1/SC 29/WG1
N1189, March 1999.

28. “Information technology - coded representation of picture and audio information -
lossy/lossless coding of bi-level images,” 14492 Final Committee Draft, ISO/IEC
JTC1/SC 29/WG1 N1359, July 1999.

