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Abstract  

The human visual system plays a key role in the final perceived quality of the compressed images. It is therefore 

desirable to allow system designers and users to take advantage of the current knowledge of visual perception and 

models in a compression system. In this paper, we review the various tools in JPEG-2000 that allow its users to 

exploit many properties of the human visual system such as spatial frequency sensitivity, color sensitivity, and the 

visual masking effects. We show that the visual tool sets in JPEG-2000 are much richer than what is achievable in 

JPEG, where only spatially invariant frequency weighting can be exploited. As a result, the visually optimized 

JPEG2000 images can usually have much better visual quality than the visually optimized JPEG images at the 

same bit rates. Some visual comparisons between different visual optimization tools, as well as some visual 

comparisons between JPEG-2000 and JPEG, will be shown.  

1 Introduction 

In the Sydney JPEG meeting (where initial JPEG 2000 proposals were made), the contribution from Sharp Labs of 

America [1] demonstrated the impressive visual improvement that frequency weighting can offer, particularly at 

display/print resolutions greater than 200 dpi (127 um/pixel).  Since then, the JPEG committee working on JPEG-
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2000 has been aggressively pursuing the goal of removing perceptual irrelevancy, in addition to statistical 

redundancy, of the image data. Fig. 1 shows a typical visual quality improvement that frequency and color 

weighting can achieve for JPEG-2000. It can be seen that the reconstructed image with proper frequency and color 

weighting (left) preserves the fine texture much better than the one generated without using visual optimization tools 

(right). What is more interesting is that the right-side image has 1.3 dB better peak signal-to-noise ratio (PSNR) 

than the other one, although its visual quality is much worse. This is but one example that shows that mean square 

error may not be a good measure of image visual quality.     

There has been substantial work in vision science that tries to understand and model the human visual 

system’s behavior. It has been recognized that the visual sensitivity varies as a function of several key image 

dimensions, such as light level [2], spatial frequency [3][4], color [5], local image contrast [2][6], eccentricity [7] 

and temporal frequency [8].  The most common method of visually-optimizing compression algorithms is to 

transform the amplitudes of the image to a perceptually uniform domain. Since the visual system’s gray scale 

behavior is approximately characterized by a cube-root front-end amplitude nonlinearity, the theory is to convert 

the image into that domain, and then quantize. Then to display, the inverse nonlinearity is used to convert to photon 

flux. The cascade of the display’s inverse nonlinearity with the visual system’s nonlinearity results in the 

quantization levels being perceptually uniform.  This technique forms part of nearly all video [9], with the exception 

that the power function of 3 is replaced by values around 2.2 to 2.4; this domain is generally referred to as gamma-

corrected.  Most compression algorithms do this by default, as a consequence of compressing images represented in 

the format of video standards. The advantage of this approach is so substantial that it is essentially de facto in any 

compression algorithm.  The key remaining dimensions of a still image that can be visually optimized are along 

spatial frequencies, color, and the visual masking by the image content. 

Given the knowledge of the human visual system’s behavior, the next step is to figure out how to exploit 

these properties effectively in a practical compression system. Some compression systems may allow a more 

thorough exploitation of the properties of the HVS than others. Table 1 shows the visual tools supported by 

JPEG2000, as compared to JPEG. It is well known that JPEG has the Q tables that allow one to apply frequency 
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and color weighting to each 8x8 block. JPEG2000, however, supports many more new features such as visual 

progressive weighting, neighborhood masking, self-masking and point-wise extended masking. We will discuss each 

one in some details in the following sections, and will explain why these features are feasible in JPEG2000, but not 

in JPEG.  The other three features - local light adaptation, eccentricity and temporal frequency, are also supported 

by the structure of JPEG2000, although they are not currently available in the JPEG2000 Verification Model (VM) 

software [10].  

 

 

 

 

 

 

 

 

Table 1: Visual optimization tools supported by JPEG2000 and JPEG. “+”: supported; “ -“ : not supported. 

 

JPEG-2000 [11] is a wavelet-based bit-plane coder where coefficients in each wavelet sub-band are divided 

into blocks of same size (called code-block) and each code-block is embedded coded independently (see Fig. 2). It 

introduces the concept of abstract quality layers that allows a post-compression optimization process where sub-

bitstreams from each code-block are assembled in certain (e.g., a rate-distortion (R-D) optimized) order to form the 

final bitstream. This quality layer formation process is a key component in JPEG2000. Basically, after an 

embedded bitstream is generated for each code-block (shown as vertical bars in Fig. 2 where bits at the top are 

more important than those at the bottom), it is up to the encoder to determine how to assemble a sub-bitstream from 

each code-block to form the quality layers. In other words, it is up to the encoder to determine how to draw the 
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quality layer lines or choose the truncation points as shown in Fig. 2. This flexibility basically enables a code-

block-wise adaptive bit allocation. As we will see later, it is this flexibility that makes many visual tools in 

JPEG2000 feasible.  

In this paper, we review the tools in JPEG-2000 that allow its users to take advantages of the various 

properties of the HVS such as spatial frequency sensitivity, color sensitivity, and the visual masking effects. We 

will show that the visual tool sets in JPEG-2000 are much richer than what is achievable in JPEG, where only 

spatially invariant frequency weighting can be exploited. As a result, the visually optimized JPEG2000 images can 

usually have much better visual quality than the visually optimized JPEG images at the same bit rates. This paper is 

organized as follows. Section 2 presents the visual tools that allow the exploitation of the spatial frequency 

sensitivity and the color sensitivity, including fixed frequency weighting and visual progressive weighting. Three 

different ways of exploiting the visual masking effects are discussed in Section 3. Finally, Section 4 shows some 

visual comparisons with some discussions. 

2 Visual Frequency Weighting   

One common visual optimization strategy for compression is to make use of the contrast sensitivity function (CSF) 

that characterizes the varying sensitivity of the visual system to 2D spatial frequencies [3][4], as shown in Fig. 3.  

In general, human eyes are less sensitive to high frequency errors than to low frequency errors. The CSF can be 

used to determine the relative accuracies needed across differing spatial frequencies, where the term “weight”  is 

used to describe the desired proportional accuracy. To use the CSF, which is usually described in visual frequencies 

of cycles/degree (cpd), it must be mapped to the compression domain of digital frequencies such as cycle/pixel. The 

design of the CSF weights is an encoder issue and depends on the specific viewing condition under which the 

decoded image is to be viewed [3]. Recent studies [12][13][14] suggest that it may also depend on the distortion/bit-

rate of the compressed image. In JPEG2000, three default weighting tables have been recommended for three 

common viewing distances [11]. Weighting tables for color images have also been recommended [14][15]. A 

sample weighting table is shown in Table 2. It can be seen that the weights for the low frequency subbands are 

larger than the high frequency subbands. There is also a bias toward the luminance component against the Cb, Cr 
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components. Note that in JPEG, the differing importance of the channels is generally handled by subsampling the 

chrominance components by a factor of 2 in the vertical and horizontal directions. Additionally, the downsampled 

chrominance components use more aggressive quantization tables than the luminance component. JPEG2000 has 

the advantage that a  “soft down-sampling” (using the weighting table without explicitly down-sampling the 

chrominance components), as opposed to JPEG’s “hard downsampling”, can be implemented. A proper frequency 

and color weighting can usually result in significant detail and texture preservation with no introduction of color 

distortions (see, e.g., Fig. 1). In general, frequency weighting is more effective for large viewing distance or high 

dpi printing. In fact, it can also be used to reduce the flicking artifacts of Motion JPEG2000, as demonstrated in 

[16].  

Level Y (LH HL HH) Cb (LH HL HH) Cr (LH HL HH) 

1 0.275783 0.275783 0.090078 0.089950 0.089950 

0.027441 

0.166647 0.166647 

0.070185 2 0.837755 0.837755 0.701837 0.267216 0.267216 

0.141965 

0.375176 0.375176 

0.236030 3 0.999994 0.999994 0.999988 0.488887 0.488887 

0.348719 

0.587213 0.587213 

0.457826 4 1.000000 1.000000 1.000000 0.679829 0.679829 

0.567414 

0.749805 0.749805 

0.655884 5 1.000000 1.000000 1.000000 0.812612 0.812612 

0.737656 

0.856065 0.856065 

0.796593  

Table 2: A sample weighting table for a viewing distance of about 1700 pixels for a five-level decomposition. A 
larger “ level”  value corresponds to a lower resolution. A larger weight indicates higher quantization accuracy.   
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Figure 3: A general un-sampled 2D CSF  
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2.1 Fixed Frequency Weighting 

In general, the CSF curve is a continuous function of the spatial frequency. However, for a discrete wavelet 

transform, it is common that only one CSF weight is chosen for each subband to facilitate the implementation. This 

way of applying visual frequency weighting is referred to as fixed frequency weighting. For example, based on the 

specific viewing condition, the weight corresponding to the sensitivity of the mid-frequency of a sub-band could be 

chosen for that particular subband [3]. The set of CSF weights can be incorporated in one of two ways in JPEG-

2000, as described in the following. In both cases, the CSF weights do not need to be explicitly transmitted to the 

decoder.  

Modify the quantization step size 

At the encoder, the quantization step size qi of the transform coefficients of subband i  is adjusted to be 

inversely proportional to the CSF weight wi. The CSF-normalized quantization indices are then treated uniformly in 

the R-D optimization process. The CSF weighting information is reflected in the quantization step sizes that are 

explicitly transmitted for each subband. This approach needs to explicitly specify the quantizers so it may not be 

suitable for embedded coding that generates a bitstream from lossy all the way to lossless. (If lossless is not 

required, this approach works fine). Furthermore, this approach cannot be extended to perform visual progressive 

weighting where weights need to be changed at different bit rates during embedded coding. This implementation can 

be invoked in the JPEG2000 VM software [10] by supplying the same file of visual weights to both the “ -Fsteps” 

and “ -Fweights”  arguments. This approach may be easier to understand and to implement than the next approach. 

Modify the embedded coding order  

In this implementation, the quantization step sizes are not modified, but the distortion weights fed into the 

R-D optimization are altered instead, linearly proportional to the CSF weight for each sub-band. This effectively 

controls the relative significance of including different numbers of coding passes from the embedded bitstream of 

each code-block to form the bitstream quality layers (see Fig. 2). This is an encoder issue only. The decoder does 

not need to be aware of it. This implementation can be invoked through the “ -Fweights”  option in the VM software. 
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This implementation is recommended since it produces similar results as the first implementation and is compatible 

with lossless compression as well as visual progressive weighting. The extension of this approach to the visual 

progressive weighting will be described in Section 2.2. 

It is also possible to do cell-adaptive CSF weighting [5] [17], which allows a better adaptation of the CSF 

weight to the signal spectrum in a sub-region (e.g., code-block) of a subband. Basically, a data-adaptive weighting 

factor can be determined for a sub-region by filtering the wavelet coefficients in that sub-region with the CSF filter 

of the corresponding sub-part of the CSF. The weighting can be done at the encoder only. Theoretically, by 

considering the actual frequency content of the sub-region, this approach would generate more accurate weighting 

factors than just choosing the CSF weight corresponding to the middle frequency of the subband. However, it has 

been shown [17] that, under the framework of JPEG2000, the advantage of this strategy over the above mentioned 

fixed frequency weighting is rather small for the compression of natural images, but it might be of bigger impact for 

images of non-natural scenery. 

2.2 Visual Progressive Weighting 

JPEG-2000 allows the implementation of visual progressive weighting, where different sets of CSF weights can be 

applied at different stages of the embedding to form different quality layers [11][18]. In particular, to implement the 

visual progressive weighting, the JPEG-2000 VM (using the “ -Cvpw” argument) changes, on the fly, the order in 

which code-block sub-bitplanes should appear in the overall embedded bitstream based on several sets of frequency 

weights targeted for different bit rate ranges. 

The initial motivation for visual progressive weighting is that “as the embedded bitstream may be truncated 

later, the viewing conditions for different stages of embedding may be very different”  [18].  Visual progressive 

weighting thus allows the use of different sets of CSF weights that correspond to different viewing distances at 

different stages of the embedding. However, it remains unclear what viewing distance should be considered for a 

specific bit rate range, or if that is entirely application dependent.  

Recent studies [12][13] have shown that even with a fixed viewing distance, a more aggressive weighting 
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usually results in a better visual quality than the “matched” weighting targeted for that viewing distance, when the 

bit rate is low. This is because, traditionally, CSF is usually derived through experiments based on the JND (Just-

Noticeable-Difference) criterion and such CSF may not be fully applicable to the low-bit-rate cases where coding 

errors are usually quite visible. A distortion-adaptive visual weighting strategy, based on a visual signal estimation 

approach (in addition to the traditional visual signal detection approach), has been proposed [12] to address visual 

weighting at low bit rates for both fixed frequency weighting and visual progressive weighting. 

In traditional psychophysical experiments, the amplitude of each frequency basis function is increased until 

it reaches a just noticeable frequency threshold (JND) where people can detect the existence of the signal under a 

specific viewing condition [3][4]. These frequency JNDs are then used to generate the CSF curve to represent the 

relative visual significance of each frequency component. Typically, wi=k/Ti, where wi and Ti, respectively, are the 

CSF weight and the frequency detection threshold for the ith frequency basis function, and k is a constant 

normalization factor. Most previous works on perceptual coding usually implicitly assume that the relative weights 

will remain unchanged for different distortions/bit-rates.  

Experiments have shown [12][13] that the traditional CSF weights do not seem to work well in low bit rate 

scenarios. This is not necessarily surprising because the traditional CSF curve is derived based on just noticeable 

detection thresholds (corresponding to a visually near-lossless condition). At lower bit rates, the distortion is quite 

visible and the visual effect has not been conclusively understood in the literature. A distortion-adaptive CSF 

weighting strategy was proposed in [12] to address the visual frequency sensitivity under the condition of large 

distortions. 

It was argued that, for low bit rates, the effect of visual distortion is an estimation problem rather than just 

a detection problem [12]. In other words, it becomes important to estimate the amount of visual distortion of each 

frequency component perceived by the human eyes when measuring the frequency sensitivity. For wavelet based 

systems, different basis functions usually have different spatial supports, and different non-flat envelops. In general, 

low frequency basis functions have larger spatial supports than high frequency basis functions. In the visually near 

lossless scenario, the side lobes of the basis function remain largely undetected.  So the spatial support of the basis 
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function is not of significant impact on the perception. However, at low bit rates, the distortion signal strength is 

increased and the side lobes of the basis function become visible. The spatial support of the basis function starts 

affecting the perception of the distortion.  

The following measure has been proposed in [12] to compensate for the “side lobe effect” . Let fi(x) denote 

the basis function with unit peak-to-mean amplitude for the ith subband. Assume the distortion to each basis 

function is d fi(x) where d is the normalized peak-to-mean amplitude (in the unit of Ti). The normalization is with 

respect to the frequency detection threshold Ti of each basis function. It accounts for the visual sensitivity to spatial 

frequency. We define the “effective” basis distortion function gi(x; d) as 

gi(x; d) = | d fi(x) |,  if | d fi(x) |>1 

= 0, otherwise   ( 1 ) 

The coring to zero is a rough model of the threshold aspect of the CSF. The compensation factor λ i that accounts 

for the “side lobe effect”  can be defined as 

∫
+∞

∞−
>=  1 d if   ,dx) |);(|()( 1/ppdxgd iiλ    ( 2 ) 

where 0 ≤  p < ∞. If  d ≤ 1, λ i(d) will all be set to 1. Therefore, if d is less than 1 (or equivalently, the peak-to-mean 

amplitude of the distortion to each basis function is less than the frequency detection threshold Ti), there is no 

compensation for the “side lobe effect” . If the actual peak-to-mean amplitude of the basis distortion function is 

greater than Ti, then the portion of the basis distortion function that has an amplitude exceeding the threshold Ti will 

contribute to the visual distortion. A special case is that p =2, and d -> ∞. In this case, the compensation factor λ i is 

in fact the square root of the energy of the basis function with unit peak-to-mean amplitude, subject to a constant 

factor that is common to all basis functions. In general, low frequency basis function with unit peak-to-mean 

amplitude will have larger energy than high frequency basis funtion with unit peak-to-mean amplitude. This 

suggests that low frequency basis function is more sensitive to distortion than high frequency basis function, thus 

demanding more protection than what the traditional CSF curve suggests that only accounts for frequency 
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sensitivity, but not the “side-lobe effect” . The final effective CSF weight for a distortion to the ith basis function 

with a Ti-normalized peak-to-mean amplitude of d should be  

wi′ = wi λ i,   ( 3 ) 

subject to a constant normalization factor.  

The model described above tries to characterize the different amounts of distortion perceived by the human 

eyes when the distortion signal for each frequency has an amplitude that is d times of its frequency detection 

threshold Ti. Note that previous works on perceptual coding usually assume that these visual distortions are the 

same. The proposed model therefore provides a fine adjustment of the frequency weights based on the instant Ti-

normalized peak-to-mean amplitude of the distortion signal during the embedded coding process.  

The traditional CSF curve usually has a dip at very low frequencies and reaches the peak value at some 

mid-frequency fpeak. In practice, the weights are usually set to 1 for all frequencies no larger than fpeak, which is done 

to consider the more practical usage of a range of viewing distances, where only the closest is known or designed 

for. For a reasonable compenstation of the “side-lobe effect” , we assume that the peak will be assumed at the next 

lower frequency level. For example, in Table 3, the original CSF weights 1000.tbl have a peak at level 3. The 

effective weights 1000_∞.tbl  will then have a peak at level 4.  

This technique, referred to as the distortion-adaptive visual progressive weighting (DAVPW) strategy, was 

implemented in [13] based on JPEG2000 VM7.0 [10]. In particular, for each quality layer, the instant Ti-

normalized average distortion of the whole image after encoding the previous quality layer will be used to calculate 

the compensation factors and update the effective weights.    

level 1000.tbl (LL, LH, HL, HH) 1000_∞.tbl (LL, LH, HL, HH) 

 

1 

 

1.0000  0.5608  0.5608  0.2841 
 

1.0000  0.1833  0.1833  0.0884 

 

2 
 

1.0000  1.0000  1.0000  0.7271 
 

1.0000  0.5251  0.5251  0.3092 

 

3 
 

1.0000  1.0000  1.0000  1.0000 
 

1.0000  1.0000  1.0000  0.7876 
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4 1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000 

 

5 

 

1.0000  1.0000  1.0000  1.0000 
 

1.0000  1.0000  1.0000  1.0000 

 
Table 3: Two sets of weights (for luminance only) for visual progressive weighting under 1000-pixel viewing 
distance condition. Left: traditional weights; Right: effective weights with p=2 and d=∞ (where the distortion is 
assumed to be very large). 

 

We compared the performance of the distortion-adaptive visual progressive weighting to that of the fixed 

weighting using the 1000.tbl table for the on-screen 1000-pixel viewing distance case. Fig. 4 shows  that DAVPW 

provides noticeable visual improvement over fixed weighting at the low bit rates.  In general, the lower the bit-rate, 

the larger the visual improvement is. Fig. 5 shows that while  the aggressive 1000_∞.tbl table for fixed weighting 

performs well at 0.25 bpp, it results in high frequency artifacts at 0.75 bpp. On the other hand, DAVPW 

automatically adjusts the effective weights, thus provides good visual quality across different bit-rates/distortions. 

                      
 

 

 

Fig. 4: Foreheads of the “woman” image coded at 0.25 bpp using different weighting strategies. 
 

                     
 

 

 

Fig. 5: Fingers of the “woman” image coded at 0.75 bpp using different weighting strategies.  

 

Fixed weighting 
with 1000.tbl 

 DAVPW Fixed weighting 
with 1000_∞.tbl 

 Original 

 DAVPW  Original 
Fixed weighting 
with 1000_∞.tbl 

Fixed weighting 
with 1000.tbl 



To appear in Special Issue on JPEG 2000, Signal Processing: Image Communication Journal, Vol. 17, no 1, October 2001. 
       

 12 
 

3 Visual Masking 

Frequency weighting is usually very effective for applications with a high-resolution display or large viewing 

distance. In both cases, the viewing distance expressed in units of pixels will be greater than around 1500. The 

advantage of this technique, however, becomes less noticeable for lower resolution display and closer viewing 

distance, since the CSF curve mapped to the digital domain tends to be flat under those viewing conditions (that is, 

when the Nyquist is low when expressed in visual frequnecy). In this case, visual masking provides more leverage 

for improving the visual quality. 

Visual masking is a perceptual phenomenon where signals are locally masked (i.e., hidden) by a 

background texture . In compression applications the image acts as a background  that reduces the visibility of the 

false signals generated by the distortion.  JPEG2000 supports the exploitation of self-masking [19], neighborhood 

masking [20] and point-wise extended masking [21][22], as will be discussed in this section. The visual masking 

approaches in JPEG-2000 allow bitstream scalability, as opposed to many previous works [2][6] [23].  

3.1 Psychophysics Background for Masking   

The design of a compression system that exploits visual masking effects is based on psychophysical data for the 

threshold vs. masking contrast, as shown in Figure 6. These curves describe the elevation of threshold, which in the 

context of compression relates to the maximum allowable distortion. Also note that the inverse of threshold is the 

visual sensitivity.  The data shows the visual system’s behavior for two types of masking patterns.  One type is 

noise, having uncorrelated phase and whose results are shown as the dashed line.  This shape of this result will 

occur if the noise is white or narrow band. The other key type of mask is a sine wave, which is entirely correlated in 

phase.  At low mask contrasts, the threshold is the same as if it was presented on a uniform field (zero contrast). 

This is true for both noise and sine masks. As the contrast increases for the noise mask, the threshold initially stays 

constant but then the slope increases until it reaches a constant slope in this log-log plot. The plot can be described 

by the two asymptotic regions; one with a zero slope for low contrast and one with a slope near 1.0 for high noise 

contrast.   
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The data for sine masking is shown as the solid line and there is an additional region where the threshold is 

actually reduced from that of the uniform field. This region indicates that masking is not occurring, but rather the 

opposite, where the background masking content actually makes the visual system more sensitive. This effect is 

referred to as facilitation, and the curve shape is referred to as the dipper effect. This type of masking usually 

displays a lower slope for high contrasts, and a value of 0.7 is typical.  Actual images consist of regions that are 

various blends between these types of masks.  For a detailed discussion of how the masking functions within the 

spatial frequency channels of the visual system, as well as how it is affected by global frequency weighting of the 

CSF, see [24]. More recent work in attempting to unify the understanding of masking by patterns and in natural 

images can be found in [25].  
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Figure 6: Threshold vs. masking contrast for noise mask (dash line) and sine mask (solid line). 
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Figure 7: Encoder quantization  (from Watson, [27]) 

 

One way to use this effect appears in [26][27]. The quantization as a function of coefficient amplitude is 

shown in Figure 7 (from [27]), and is given by the equation [26], 
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where Q is the quantization interval, g is the gain of the coefficient to display contrast, CTO is the visual contrast 

threshold for the band, Cb is the contrast of the wavelet band coefficient to be quantized, and S is the masking slope, 

which is usually between 0.5 and 0.7. In the figure, the x-axis c/C is analogous to mask contrast, the quantization 

levels are L0, L1, L2, etc, and the quantization intervals derive from the thresholds, T1, T2, T3, etc.  

Further work in applying masking to compression suggested its application to a Cartesian-separable 

wavelet transform [4], which is computationally more efficient than the Cortex Transform but less accurate with 

respect to the visual system. The quantization strategy prior to entropy coding was suggested to be,  

21 λθλθ σ+= DQ b      ( 5 ) 

where Qb is the quantization scale factor of a band b having wavelength λ and orientation θ.  The value Dλθ is the 

visual threshold for that band b.  The variance, σλθ
2, is that of the band and possibly neighboring orientation bands 

taken over a local area.  The effect of using this masking was never demonstrated in the paper, however. This 

would have caused the resulting quantization to be applied to a coefficient as a function of its band’s σ, which for 

the AC bands is proportional to contrast. The resulting quantization makes the high-contrast asymptotic power-

function slope equal to 1.0, rather than 0.7. In [23], an algorithm that locally adapts the quantizer step size at each 

pixel according to an estimate of the masking measure is presented. To eliminate the overhead, it exploits masking 

based on an estimate of the current coefficient value from neighboring already coded coefficients. The estimate, 

however, may not be accurate given that the coefficients are pretty much de-correlated. It is not amenable to 
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scalable coding. Another approach is to implement the nonuniform quantization by applying a nonlinearity prior to 

a uniform quantizer.  This will require a different nonlinearity from that shown in Fig. 6. Such a nonlinearity would 

be derived from the integral of the threshold data.  That is the approach employed in JPEG2000, and is to be 

discussed in this section.  

3.2 Self-contrast Masking 

It is understood nowadays that the masking property of human vision primarily occurs locally within spatial 

frequency channels that are each limited in radial frequency as well as orientation. It is then possible to exploit the 

masking effects by nonuniform quantization which quantizes more coarsely as a function of the activity in spatial 

frequency and spatial location [27], as opposed to overtly adaptive techniques such as [6][28][29]. Since these 

masking effects are approximately the same in each channel, once normalized, the same masking procedure could 

be used in each channel without incurring any overhead [19].   
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Fig. 8: Bock diagram for the self-masking approach in JPEG2000.  
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Figure 9: Nonlinearity at the encoder for self-masking. Dashed line for noise masking, solid line for sine wave 

masking. 
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Figure 10: Nonlinearity at the decoder for self-masking. Dashed line for noise masking, solid line for sine wave 

masking. 
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The basic idea of this technique is to use a de-accelerating nonlinearity, referred to as a transducer function, 

prior to a uniform quantizer within a compression system. Ideally, a scaled derivative of these transducer functions 

equals the threshold function of Fig. 6. The block diagram for the system in JPEG2000 is shown in Figure 8.  

Basically, at the encoder, a power function can be used to capture the essence of the transducer function, i.e., 

y= xα ,  0 < α ≤ 1   ( 6 ) 

is applied to each coefficient, prior to uniform quantization and bit-plane coding. The output of the transducer 

function is regarded as being the perceived visual response, which is perceptually uniform.  At the decoder, the 

inverse process is applied. Since a coefficient’s quantization increase (i.e., coefficient masking) is entirely 

determined from that coefficient’s value, we refer to this technique as self-contrast masking.  

Fig. 8 shows that the band coefficient images are generally scaled in a calibration step so the coefficients 

are linearly scaled prior to their transform by the non-linearity.  This scaling can be band-dependent, and is done for 

optimizing to the frequency characteristics of the visual system, shown dashed in the figure. Consequently, the x-

axis of Figure 9 should be regarded as relative amplitudes.   

The decoder nonlinearity, or inverse transducer function, is shown in Fig 10, for both the noise-based and 

sine-based masking curves. Since higher slopes at the decoder magnify the quantization error more, we see that less 

quantization error is allocated to the lower amplitude coefficients than the higher. With quantization, the cascade 

effect is essentially non-uniform quantization, as shown in Figure 11 for the sine-based masking curves of Fig. 9 

and 10. It has a small region of slightly increased quantization near zero due to the dipper effect, as well as the 

vastly increased quantization for high coefficient values.  As stated previously, these x-axis amplitudes are, of 

course, relative.  

In general, the resulting step size as a function of coefficient amplitude is given by the derivative of the 

transducer function at the encoder. This is shown in Figure 12 for the power function as a dashed line and the 

sigmoidal function as a solid line.   This curve should be compared to the psychophysical data in Figure 6. 
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Figure 11: Cascaded encoder/decoder nonlinearities with quantization 
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Figure 12: Error size as a function of signal amplitude 

.   

In addition to the actions of the nonlinearity described before, there are a few specific details. The first of 

these is that the nonlinearity is not employed on specific bands.  There are bands eliminated based on their location 

in the wavelet decomposition pyramid.  For example, this nonlinearity should never be employed on the baseband of 

the pyramid, that is, the band that includes the DC value of the image. It can also be advantageous to avoid 

applying masking to low frequency bands, since there is little to gain in bits from these bands. It should be noted 
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that, in Fig. 8, the frequency weighting should be applied prior to the masking non-linearity. It acts as a calibration 

step between coefficient and visual threshold as a function of frequency.   

While consideration was given toward allowing the users to design their own transducer function (to use a 

sine-based or noise-based image model, for example), it proved difficult to preserve this flexibility in the JPEG2000 

VM. Consequently, only a power function nonlinearity is allowed in the standard, since its shape can be conveyed 

with a single parameter. The exploitation of self-contrast masking could be invoked in the VM software using the “ -

Xmask” option with the parameter β set to 0. A good value for α is 0.7. Note that due to the derivative relation 

between transducer and quantization result, the value of α corresponding to a slope of 0.7 in Fig. 6 should be 0.3. 

However, experiments have shown that a good value for α is the less aggressive 0.7. This is partly because there 

exists a mismatch between the wavelet band structure and the HVS’s band structure.      

3.3 Problems with Self-masking in Wavelet Compression  

Since the self-masking was designed to be closely based on current spatial models of  the visual system, it should be 

expected to properly reallocate bits to where (in terms of spatial and frequencies) the viewer is most sensitive, thus 

preventing visible distortions. However, the correspondence between the visual system and wavelet structure of the 

compression algorithm is only approximate.  Not surprisingly, issues delineating the compression algorithm from 

the visual model lead to non-optimal visual performance, and distortion artifacts of the compression process can 

indeed be more visible than expected as the bit-rate is reduced (see, e.g., Fig. 15).  These issues will be discussed 

below. 

3.3.1 Diagonal Band 

The most well known difference between this implementation and a good visual model lies in the 2D spatial 

arrangement of the filter bank, which stems from the cartesian-separable filter construction used in the wavelet 

decomposition.   One of the key problems is the fact that the diagonal band contains the mixed orientations [3][30] 

of 45 and –45 degrees. The reason this causes problems with masking is that in the visual system, energy near 45 

degrees does not significantly mask energy near –45 degrees, whereas in the cartesian-separable wavelet 
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implementation such cross diagonal masking will occur. So at a diagonal edge, the visual system’s masking would 

hide  oriented distortions parallel to the edge, but those  orthogonal would be visible. However, in the self-masking 

wavelet implementation, the quantization of coefficients in a diagonal edge leads to distortions both parallel as well 

as perpendicular to the edge, and the perpendicular distortions are easily visible, since they are not visually masked.       

3.3.2 Horizontal and Vertical Bands Encroaching on Diagonal Frequencies 

Less well known is a problem due to the shape of the filters. Notice that along the diagonal frequencies, the 

horizontal and vertical bands encroach into the diagonal region at multiples of 1/2n cycles/pixel (where n is the 

resolution level). The energy of a diagonal (D) edge can end up in the H and V bands. If the edge contrast is high 

enough, the amplitudes of the coefficients related to the edge in the H and V bands may be high enough so that the 

resulting masking effect can increase their quantization intervals. This can cause H and V linear distortions along a 

diagonal edge, which will easily be seen by the visual system.  Further, the energy displaced away from the diagonal 

band into the horizontal and vertical bands will be energy that is not taken into account in the masking of diagonal 

structures.  Any energy that causes masking in the visual system but is lost by the masking structure of the 

algorithm represents a higher bit-rate. In rate-controlled implementations, this lost masking energy will lead to 

higher distortions.    

3.3.3 Zero-Crossings and Phase Sensitivity  

Another serious deviation of the algorithm’s masking from the visual masking is the issue of phase.  The visual 

channels have limited phase sensitivity (i.e., phase uncertainty), which is greater than 90 degrees for an isolated 

visual channel, but can be as low as 45 degrees phase for signals with two adjacent channels [31][32].  Due to this 

limited phase sensitivity and since the masking effect is based on local activity in a visual channel, it is not solely 

limited to the peaks and valleys of a waveform. It can also extend across the zero-crossings.  The effect is shown in 

Fig. 13 for range of phase uncertainties. In many visual models, this phase uncertainty is caused by the visual 

channel being a quadrature phase summation of sine and cosine receptive fields, modeled as,  

 R(x)  = (sin2(2πfx) + cos2(2πfx))1/2                                                    ( 7 )                                                  
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where R is the response of a receptive field with dominate frequency f. This can be generalized to any phase 

uncertainty, ∆θ, behavior by  

   R(x) = (sinp(2πfx) + cosp(2πfx +∆θ))1/p                                                      ( 8 )                                                       

In part A of the figure, the dashed line shows a localized sine wave, representing one band’s view of a textured 

area. The solid line in that figure shows the resulting masking in the band, where we only model the rectification 

aspect of masking from Eq. 7. and having zero phase uncertainty.  The upper line in part B shows the masking 

caused by a phase uncertainty (∆θ) of π/4 via Eq. 8, while C shows a phase uncertainty of 3π/8 and D shows a ∆θ 

of π/2 (all with p = 2). If such a phase uncertainty of π/2 is approximately equal to that of the visual system, it 

results in a uniform masking over the textured area.  

 In the self-masking implementation of JPEG2000, the masking is confined to the coefficient having a phase 

width near zero degrees (for the highest frequency in a band), so the masking due to energy near the zero-crossings 

is not taken into account. While visual masking may occur over an entire texture region in actual images, the self-

masking approach of the compression process can only take into account the masking at the peaks and valleys of 

the textured region, and not the entire region. This means that entropy savings in these regions is lost, thus driving 

up the bit-rate or driving down the quality in other frequencies and regions.  
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Figure 13: Effect of Phase Uncertainty on spatial extent of masking  (B) θ = π/4; (C) θ =
�
π/8; (D) θ � π/2  

 

3.4 Neighborhood Masking 

Another way of exploiting visual masking is through the control of individual code-block contribution in the quality 

layer formation process [20]. In this approach, the embedded coding of each individual code-block is performed 

without considering visual masking effect. In particular, there is no non-linearity interspersed between the wavelet 

transform stage and the quantization stage. However, in the post-compression rate-distortion optimization process, 

the distortion metric is modified to take into account the visual masking effect. More specifically, the distortion of 

each coefficient is weighted by a visual masking factor that measures the local texture activity and is in general a 

function of the neighboring coefficients. That is, it treats each coefficient value, Vi, as though it were equal to V’i 

(from the perspective of distortion estimates), where  

 V’i = Vi / Mi                                                                                                                      ( 9 ) 

and the masking strength function is 

 Mi= A * ∑ { k near i}  |Vk|
ϒ                                                                         ( 10 ) 

with A being a normalization factor, and ϒ assumes a value between 0 and 1. Note that although each coefficient 

may have a different value of the visual masking factor Mi, this approach can only adjust the truncation points of 
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each code-block to form different quality layers.  We will refer to this type of masking as block-based neighborhood 

masking. This approach adjusts only the distortion metric at the encoder, which is an advantage from an 

implementation point of view. The decoder does not need to be aware of that. The masking effect exploited can also 

be spatially extensive which is not exploited in the self-masking approach discussed in Section 3.2. Another 

advantage is that it allows a lossless embedded bitstream to be generated, since integer implementation is feasible. 

This approach works very well for large images with diverse contents such as the “woman” image. Its weakness is 

that it can only adjust the truncation points of each code-block (i.e., the bit-allocation is code-block-based), which is 

a spatially coarser adjustment than the sample-by-sample compensation offered by the self-masking approach [19].  

Within a codeblock, no visual masking effect is exploited. As a result, it may not work very well for smaller 

images. This block-based neighborhood masking is accessible via the “ -Cvis”  option in the JPEG-2000 VM 

software.  

3.5 Point-wise Extended Masking  

A more comprehensive visual masking approach has been developed [21][22] that extends the point-wise “non-

linearity”  of self-masking [19] to an “extended non-linearity” . It  also takes care of the masking effect and spatial 

summation contributed from spatially neighboring coefficients. This is to overcome the over-masking problem of 

the self-masking approach [19] that occurs at diagonal edges, as discussed in Section 3.3. The main advantage of 

this strategy is its ability to distinguish between large amplitude coefficients that lie in a region of simple edge 

structure and those in a complex region, such as texture. This feature will assure the good visual quality of simple 

edges in a smooth background, which is often critical to the overall perceived quality. 

This point-wise extended masking approach treats visual masking as a combination of two separate 

processes. The first step is to apply a point-wise power function to the original coefficient xi, i.e.,  

xi → yi = sign(xi) | xi |
α   ( 11 )   

This is basically to account for the self-masking effect. This step assumes each signal with which a coefficient is 
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associated is lying on a common flat background. Under this assumption, { yi}  are perceptually uniform. In a real 

image, however, this is usually not the case. Each signal is superimposed on other spatially neighboring signals.  

There is some masking effect contributed from spatially neighboring signals due to the phase uncertainty, receptive 

field sizes, as well as possible longer range effects that increase detection (“pooling”) [19]. To further exploit this 

neighborhood masking effect, the second step normalizes yi by a neighborhood masking factor mi that is a function 

of the amplitudes of the neighboring signals. A good model that has been adopted by the JPEG-2000 standard [22] 

is to use the non-linear transform   

|)|/||1/(
}{ iineark kii xayz φβ∑ −−

∧
+=     ( 12 ) 

where |φi| denotes the size of a causal neighborhood, a is a normalization factor with a constant value of 

(10000/2bitdepth-1)β and bitdepth denotes the bit depth of the original image, kx
∧

 denotes the quantized (bit-

truncated) neighboring coefficients (that only retain the first few most significant bits of the quantization index to 

allow for embedded coding), and the neighborhood contains coefficients in the same band that lie within an NxN 

window centered at the current coefficient. These neighborhood coefficients also appear earlier than the current 

coefficient in the raster scan order (see Fig. 14 for an example). The neighborhood does not include the current 

coefficient itself so that an explicit solution for the inverse process is available. The causal neighborhood should 

also respect code-block boundaries when a "respect_block_boundaries" switch is selected at the encoder. This 

switch should cause the neighborhood masking weighting factor mi not to include coefficients outside of the current 

code-block. Also, this switch must be transmitted to the decoder to tell it exactly how the neighborhood is formed. 

When the switch is on, it allows parallel implementation and restricts error propagation, but it may sacrifice some 

performance. The parameter α assumes a value between 0 and 1, and is used to control the degree of self-masking. 

A typical value of α is 0.7. The parameter β assumes a positive value, and, together with N, are used to control the 

degree of neighborhood masking. The parameters β and N play important roles in differentiating coefficients around 

simple edge from those in the complex area. The degree of averaging is controlled by N; β controls the influence of 
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the amplitude of each coefficient.  It is important that β assumes a value much smaller than 1, and a  good value of 

β is 0.2. This is quite different from some previously proposed variance-based neighborhood activity measure 

[6][23]. It helps to protect coefficients around simple sharp edges, since the coefficients around sharp edges usually 

have high values. A variance-based measure may not be able to distinguish a local sharp edge area (with few large 

coefficients and all the rest close to zero) from a local complex area (with many mid-amplitude coefficients). This is 

because the large coefficients, although only a few, in a local sharp edge area could contribute significantly to the 

overall variance, due to the square operation. Note that masking is lower than expected near sharp edges (as 

opposed to textures) due to “pooling”. A small value of β suppresses the contribution of a few large coefficients 

around sharp edges to the neighborhood masking factor, thus implicitly distinguishing coefficients around sharp 

edges from coefficients in a complex region. For example, two neighborhood sets of { 5, -5, 5, -5, 5, -5, 5, -5}  and 

{ 0, 0, 0, 10, -10, 0, 0, 0}  have the same variance of 5. But their “L0.2-norms” are 1.38 and 0.40, respectively.  

The resultant zi values are then subject to uniform quantization. The inverse is performed at the decoder. 

Note that quantized neighboring coefficients will be used at the encoder to ensure that both the encoder and the 

decoder perform exactly the same operation to calculate mi. For embedded coding, unfortunately, the encoder can 

not do the non-linear transformation based on the exact final compressed/quantized version of the coefficient xk 

because the “extended non-linearity”  is applied prior to scalable compression, and the decoder can have any 

bitstream that has a lower rate than the final rate. Nevertheless, the discrepancy of  mi calculated at the encoder and 

the decoder can be completely eliminated or reduced by a conservative strategy where only the same very coarsely 

quantized (i.e., bit-truncated) coefficients are used to calculate the masking weighting factor mi at both the encoder 

and the decoder. In fact, after zi is quantized, only the Bits_retained most significant bits of the quantization index 

will be retained (the rest bits are replaced with 0). This modified quantization index is then converted back to the x 

domain, and is used for calculating mi, As long as Bits_retained is small enough (with respect to the available bit 

rate at the decoder), the decoder will be able to obtain exactly the same bit-truncated version of the neighboring 

coefficients. The compromise here is a coarser granularity of mi which may slightly affect the accuracy of the 

masking model. But experiments have suggested that the performance usually is not very sensitive to which 
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quantized version of the neighboring coefficients is used. As a result, bitstream scalability is feasible. This is 

essentially a coefficient-wise adaptive quantization without any overhead.  The system diagram of the point-wise 

extended masking approach is the same as Fig. 8 except that the power function is replaced by the extended non-

linearity presented in Eq. 12. Note that visual masking may be applied to all frequency levels that have an index 

value not less than a particular level Minlevel which can be specified in the bitstream. It should not be applied to 

the lowest frequency band (the DC band). 

 

 

 

 

Fig. 14: An example of the causal neighborhood (N=5, |φi|=12). “o” : current coefficient; “ x” : coefficients in the 
causal neighborhood. 

 

 

 

 

 

Fig. 15: Self-masking result (left) vs. point-wise extended masking result (right) at 0.25 bpp. 
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Fig. 16: A neighborhood masking factor (mi) map for the point-wise extended masking approach. The amplitudes 

have been amplified for display purpose. 

Fig. 15 shows that the point-wise extended masking approach significantly improves the visual quality for 

the “woman” image. What happens here is that the neighborhood masking factor mi assumes a smaller value for 

those coefficients in the simple sharp edges (e.g., fingers) than those in the more complex areas (e.g., sweater, see 

Fig. 16).  As a result, more bits are allocated to improve the simple sharp edge areas while the more complex areas 

are allocated less bits to take advantages of the texture masking effects. 

4. Discussions  

The various visual optimization tools in JPEG-2000 have their own merit and weakness. The visual frequency 

weighting is usually very effective for large viewing distances or high-resolution displays, but it is tied to a specific 

viewing condition. Under different viewing conditions, the perceived quality can vary a lot. In other words, the 

weights used at the encoder have to match the viewing condition under which the image is to be viewed. When using 

a viewing distance for an application or image study, it is important to use a frequency weighting set for the closest 

distance expected. Three sets of CSF weights have been recommended in JPEG-2000 for some common 

viewing/printing scenarios. These are csf1000, csf2000, and csf4000, where 1000, 2000 and 4000 refer to the 

viewing distance in pixels.  Unlike the JPEG default, these are based solely on the CSF and hence, do not include 

any display MTF effects, such as the CRT MTF implicitly occurring in the JPEG default tables. We decided to 

omit the display MTF in the default, since with today’s technology it is equally as likely that the display will be a 

direct view LCD, DLP projector, or hardcopy as it will be a CRT.   

Fig. 17 shows some visual comparison between JPEG2000 and JPEG, both using frequency and color 

weighting (the default Q tables were used for JPEG using the IJG implementation of JPEG with optimized Huffman 

table, and Table 2 that corresponds to a viewing distance of 1700 pixels was used for JPEG2000). The results are 

based on 6 observers and 6 color images, using 300 dpi printing. The graph shows the bit-rates of JPEG2000 

against JPEG to achieve similar visual quality. For example, it costs JPEG 0.53 bpp to achieve similar visual 
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quality as using JPEG2000 at 0.25 bpp. The dashed line represents the reference points where JPEG and 

JPEG2000 assume the same bit rates. Overall, JPEG2000 provides a bit rate saving of 10-50%, to achieve similar 

visual quality. 

 

 

 

 

 

 

 

 

Fig. 17: Visual comparison between JPEG2000 and JPEG. Courtesy of Troy Chinen and Alan Chien [33].   

 

The visual masking approaches usually are less sensitive to the viewing condition. The self-masking 

approach usually protects the fine texture well, which is especially suitable for high quality photographic images 

that contain human faces. It, however, may have some problems with sharp edges, especially at low bit rates. The 

block-based neighborhood masking approach usually tends to smooth out the fine texture a little bit, but protects 

high contrast edges well. It also has some limitations for relatively small images, mainly due to its block-based 

nature. It, however, has successful performance for large images with diverse content. The point-wise extended 

masking approach combines the strength of both self-masking and neighborhood masking, thus resulting in mutual 

synergism. All three masking approaches we discussed achieve the adaptive behavior without explicit segmentation, 

edge detectors, and overhead bits. They all allow bitstream scalability, which is very important in many 
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advantage. The major improvement areas are the low amplitude texture and high-contrast sharp edges.  Fig. 18 

shows some results of the self-masking approach, as compared to frequency weighting case and the case where no 

visual tool is applied. Self-masking preserves the low amplitude texture better than the other two. This is more 

evident in the close-up views of the foreheads. Some comparisons between different masking approaches are shown 

in Fig. 19. It can be seen that the point-wise extended masking approach preserves the fine details best, as 

compared to block-based neighborhood masking, and self-masking alone. The block-based neighborhood masking 

approach does not seem to work well on this relatively small size image (512x768). 

The various visual optimization tools can in fact be combined together to maximize the visual performance. 

It has been observed that, for some complex images with diverse content, the visual improvement can be equivalent 

to a saving of up to 50% in bit-rate. Finally, as mentioned before, JPEG 2000 also supports the exploitation of 

other HVS properties such as local light adaptation, eccentricity and temporal frequency sensitivity. These could be 

some of the future research topics.      
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Fig. 1:  Portions of the compressed “woman” images (crop size: 310x400, original image size: 2048x2560) using 

JPEG2000 at 0.75 bpp. Left: baseline JPEG2000 with frequency and color weighting using Table 2, PSNR=34.6 

dB; Right: baseline JPEG2000 without frequency and color weighting, PSNR=35.9 dB. 
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Fig. 2: JPEG2000 codestream quality layer formation 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 18: Advantageous results of self-masking approach coded at 0.5 bpp, with close-up view of the foreheads.   
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Fig. 19: Comparison of different masking approaches, coded at 0.5 bpp, with close-up view of the foreheads.   


