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Abstract—This work aims to apply visual-attention modeling
to attention-based video compression. During our comparison
we found that eye-tracking data collected even from a single
observer outperforms existing automatic models by a significant
margin. Therefore, we offer a semiautomatic approach: using
computer-vision algorithms and good initial estimation of eye-
tracking data from just one observer to produce high-quality
saliency maps that are similar to multi-observer eye tracking
and that are appropriate for practical applications. We propose
a simple algorithm that is based on temporal coherence of the
visual-attention distribution and requires eye tracking of just one
observer. The results are as good as an average gaze map for two
observers.

While preparing the saliency-model comparison, we paid spe-
cial attention to the quality-measurement procedure. We observe
that many modern visual-attention models can be improved
by applying simple transforms such as brightness adjustment
and blending with the center-prior model. The novel quality-
evaluation procedure that we propose is invariant to such
transforms.

To show the practical use of our semiautomatic approach,
we developed a saliency-aware modification of the x264 video
encoder and performed subjective and objective evaluations. The
modified encoder can serve with any attention model and is
publicly available.

Index Terms—Eye-Tracking, Saliency, Video Compression, Vi-
sual Attention, x264.

I. INTRODUCTION

Visual saliency modeling is a promising approach to improv-
ing the quality of many existing image- and video-processing
applications, such as description [1], quality measurement [2],
retargeting [3] and compression [4]. Among them, saliency-
aware video compression probably delivers the most practical
value.

According to Cisco’s forecast [5], the amount of video in
worldwide mobile traffic will increase 11-fold between 2015
and 2020 (from 55% to 75% of all traffic), whereas connection
speeds are expected to grow just 3-fold by 2020. Globally,
the spread of IPTV, especially video on demand, and new
video formats (UHD and 360 video) will cause IP video traffic
to consume up to 80% of all global IP traffic by 2019 [6].
The saliency-aware approach can compress videos efficiently
by exploiting features of the human visual system without
switching to a new video-encoding standard. Modern video
codecs still don’t take attention non-uniformity into account,
so psycho-visual video optimization could be the main vector
of further video-encoding research.

Major advances in saliency prediction resulted from image-
saliency models. Nevertheless, in the case of video, what
determines the regions of interest are the features of object

movement rather than visual features of the objects themselves.
Unfortunately, motion descriptors are an area of computer
vision that is less studied than image descriptors, since they
represent more-complex phenomena. Therefore, the quality
of existing automatic approaches is worse than even single-
observer eye tracking [7]. Acceptable saliency-map quality
for practical video-processing applications is possible through
explicit eye tracking of multiple observers and averaging of
the collected results. Doing so, however, can be very expensive
and time consuming.

On the other hand, constant frame changes prevent an
observer from surveying all of the video content (unlike in the
image case). Thus, forcing observers to focus on a single object
leads to temporal coherence in the visual-attention distribution.
In summary for the case of video, making a good initial saliency
prediction is difficult (owing to the complex motion structure),
but making further predictions or improving initial ones is
simple when employing well-predictable inert temporal saliency
structure.

Therefore, we propose a semiautomatic approach that trades
off between two previous approaches. Our model is initialized
using eye-tracking data from just one observer; this data is
sufficiently accurate but temporally incoherent. A temporal-
propagation algorithm enforces the temporal coherence of the
model, whose quality thus becomes similar to eye-tracking
data from two observers.

As in [8], we discovered that simple manipulations of
saliency maps, such as brightness correction and addition of
a center-prior image, can improve the quality of all tested
saliency models. Therefore, we propose a method for finding the
transformations that maximize the quality of a given saliency
model. We employed this method in our comparison of video
saliency maps predicted by 15 saliency models; it greatly
improved the performance of all tested models. The comparison
revealed that automatic models are only slightly better than
the simplest center-prior model, making them impractical for
saliency-aware video compression. We therefore believe our
semiautomatic model is an optimal choice for such applications
in terms of the benefit-to-expense ratio.

Previously, no state-of-the-art attention-aware video encoder
was publicly available, even though such an encoder would be
highly practical and a relatively straightforward implementation.
This absence forces researchers to cobble together pipelines [4],
[7], [9], [10] and use suboptimal implementations of the
reference standard [4], [9]; in addition, it limits the fairness of
the video-compression comparisons among different saliency
models. Therefore, we propose a saliency-aware modification



of the x264 [11] encoder that enables anyone to effectively
embed any visual-attention model into the compression pipeline.
The encoder is publicly available from our project page at
http://compression.ru/video/savam/.

We evaluated the proposed encoder and saliency model using
a subjective experiment in which we obtained a 23% bit-rate
savings compared with regular x264. Also, we present an
objective evaluation of the encoder for other models.

The remainder of this discussion is organized as follows:
In Section II we provide an overview of existing approaches
to visual-attention modeling and saliency-aware compression.
Section III introduces our semiautomatic visual-attention model.
In Section IV we describe a method of model-transformation
fitting and demonstrate its benefits by comparing 15 saliency
models, and in Section V we present an attention-aware modi-
fication of the x264 encoder and evaluate it both subjectively
and objectively.

II. RELATED WORK

A. Visual-attention modeling

To the best of our knowledge, no other research has attempted
to construct saliency maps semiautomatically. Therefore, the
most related efforts involve entirely automatic models of visual
attention. All existing visual-attention models can be classified
under two main approaches: bottom up and top down [12].

The bottom-up approach assumes the image properties drive
attention. In [3], the saliency of a point is considered to be the
uniqueness of a small surrounding area. The authors of [13]
use the same definition of saliency, but they also perform
postprocessing on the basis of pixel reciprocity and association
of pixels into objects. In [14], saliency refers to the uniqueness
of certain image frequencies and is extracted in the Fourier
domain. This idea expands to the case of video in [4] through
the use of a multiscale pyramid of quaternion Fourier transforms
for the initial image and motion-strength maps. The authors
of [15] propose a general algorithm to extract saliency from
local image features. They transform the feature map into a
Markov chain, marking the edges using a normalized measure
of distinctiveness as well as the spatial distance between nodes.
The saliency map is the equilibrium distribution obtained from
the random-walk algorithm.

The top-down approach assumes the viewer’s goals and
experience are the main drivers of attention; thus, it requires
recognition of objects familiar to human experience along
with an understanding of their relationships. In our estimation,
the most remarkable model of top-down attention appears
in [16]. Here, the authors use face, person and car detection
together with multiple bottom-up features to train a per-
pixel SVM classifier. They then consider the distance to
the SVM hyperplane to be the saliency value. Although
their proposed approach obviously cannot consider complex
spatial relationships, it nevertheless demonstrates high scores in
different comparisons [8], [13]. Recent deep-learning advances
increase the accuracy of object recognition and classification.
In [17], the authors apply convolutional neural networks to

detect salient objects, taking into account both the local and
global features of images.

Although Yarbus in [18] describes the important role of
top-down mechanisms in determining eye movements, these
mechanisms remain poorly studied; at this point, corresponding
models can only produce comparable results relative to bottom-
up ones.

B. Saliency-based compression

The main idea of saliency-based compression is bit allocation
in favor of salient regions. There are several implementations
of this idea. We propose classifying them according to the
following criteria:

• Model of visual attention underlying the method
• Reference encoder: MPEG-1 [9]; MPEG-4 [4], [9]; or

H.264 [4], [10], [19]–[22]
• Method of bit-allocation control: implicit [4], [9], [10]

(video preprocessing before encoding; e.g., non-uniform
blur) or explicit (modifying internal encoder data; e.g., set-
ting saliency-specific quantization-parameter (QP) values
for macroblocks) [19]–[22]

• Evaluation methodology: either researchers can claim that
videos encoded using their methods have lower bit rates
than the reference video at the same visual quality [4], [9],
[10], [19], [20] or they can conclude that their proposed
encoders provide better visual quality than a reference at
the same bit rate [21], [22]. We believe the second strategy
is slightly more reliable because checking bit rates is easy,
but confirming that two different videos have same visual
quality is difficult.

• Method of visual-quality measurement: objective [20] or
subjective [22]

In [9], the researchers propose a saliency-based video-
compression framework based on the Itti-Koch-Niebur (IKN)
saliency model. They followed a constant-quality, variable-bit-
rate strategy and showed that compared with MPEG-1 and
MPEG-4 encoders, application of nonuniform blur (guided
by the saliency map) to the entire video before compression
using the reference encoder significantly reduces the output
bit rate. Improving on this work, [19] replaces nonuniform
blur with explicit individual selection of the QP values for the
macroblocks.

To achieve high time efficiency in the saliency-based video-
compression framework that [20] proposes, the authors perform
temporal propagation of the saliency map computed from
a single frame and proceeding to successive frames. (In
Section III we show how a similar propagation approach can
improve the quality of the gaze map from a single observer.)
The authors explicitly control bit allocation by setting individual
QP values.

The method of bit allocation proposed in [21] attempts to
avoid compression artifacts in non-salient regions that could
grab viewer attention and thus change the initial saliency map.

http://compression.ru/video/savam/#downloads
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Fig. 1. Saliency maps predicted by different methods. The icons in the lower-left corners are the same images prepared for comparison (see Section IV).
Histograms for all images are normalized for the sake of visibility. The weakness of automatic methods is clearly visible relative to eye tracking for even a
single observer.

III. PROPOSED VISUAL-ATTENTION MODEL

According to [8], existing visual-attention models offer little
improvement over the center-prior model. Moreover, results
presented in [7], along with our results (Figure 3), indicate
that none of these models can compete with eye tracking, even
for a single observer.

Because we intend to apply our saliency framework to video
compression, we require high-quality saliency maps. The exact
dependence of similarity to ground truth on the number of
observers is obtained in [8]. In accordance with these results,
the only way to achieve such high quality is to use the eye-
tracking procedure for many observers—a very labor-intensive
and unreasonable prospect.

One solution is a semiautomatic approach that uses fixation
points from just one observer together with some postprocessing
that employs spatiotemporal features of attention.

Most of the time the spatial distribution of visual attention
is strongly nonuniform. At least the artistic content has several
foci of attention, but everywhere else is significantly less salient.
Confirming this observation is the fact that gazes from just a
few observers make good saliency predictions [7], [8]. Despite
the spatial nonuniformity, saliency maps have a high degree of
temporal uniformity (e.g., the same object has similar saliency
in adjacent frames). This phenomenon can be explained in the
context of physiology. Thus, an observer’s next eye movement
can be determined by short-term memory of the scene, because
human short-term memory retains a representation of the
environment for some time [29].

On the basis of these observations, we employ the temporal
uniformity of saliency to restore the nonuniform spatial
structure using a temporal saliency-propagation algorithm:

Rt = βP+
t + (1− β)P−t , (1)

where Rt is t-th frame of the the propagation result and P+
t

and P−t are forward and backward terms, respectively, defined

as follows:

P±t (p) = αP±t∓1(p+ v±t (p)) + (1− α)St(p). (2)

Here, p ∈ R2, St is a source sequence of saliency maps
(acquired from single-observer eye tracking), ~v±t (p) is a motion
vector field from St∓1 to St, and α and β are algorithm
parameters.

Computation of the vectors ~v±(p) uses the motion-
estimation algorithm described in [30]. This algorithm is faster
than common approaches to computing optical flow because
of its block structure, so the temporal propagation can be used
for real-time encoding applications (the term P− should be
excluded in that case). A dense optical flow is unnecessary,
because the generated saliency maps are intended for video
compression at the block level.

This propagation technique is especially helpful for scenes
with multiple saliency foci. Figure 1 shows an example. The
technique also helps fill frames for which no fixation data has
been collected because of blinking or saccades.

We used the training sequence [7] to estimate the dependence
of saliency-map quality on the parameters α and β. The results,
illustrated in Figure 2, show the method achieves the best
quality with α = 0.8 and β = 0.45. Such a high α value
indicates that an output saliency map strongly depends on
its adjacent frames. This observation is coherent with the
temporal uniformity of visual attention. We used these optimal
parameter values in all our experiments. It is worth noting that
the estimated function in Figure 2 has a sole distinctive local
maximum. In other words, the optimal parameter values for
different observers are approximately the same; adjusting the
parameters individually is unnecessary.

IV. EVALUATION METHODOLOGY

As we mentioned, the simple center-prior model—which
doesn’t consider any image context—is only up to 10%
worse than state-of-the-art saliency models (see the results
on Figure 3). This small difference is because the quality of
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Fig. 3. Objective-evaluation results of visual-attention models using different measures. The blue parts of the bars show the initial model quality; the red parts
show the cumulative increase after applying the simple transformations (see Section IV). These transformations yield a significant gain for automatic models as
well as for models that use eye-tracking data. In particular, some automatic models can outperform others only after the fitting procedure. All automatic
models, however, are still unable to compete with eye tracking, even for a single observer.
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Fig. 2. Dependence of generated saliency-map quality on temporal-propagation
parameters α and β for eight observers. The saliency maps come from the
proposed algorithm (Section III) and are postprocessed according to the tuning
procedure (Section IV-B). Estimates for the quality of the final saliency maps
are based on the PSNR measure.

saliency maps predicted by various visual-attention models can
be significantly improved using sequences of simple postpro-
cessing transformations: brightness correction, blending with
the center-prior image and blurring, as recent comparisons [7],
[8] show. Consequently, such transformations contribute the
most to the performance of modern saliency models. Practically,
the choice of these transformations determines the model’s
advantage on a test video.

Good-enough transformations, however, are simply selected
manually for each kind of video with known ground-truth
saliency. Ultimately, simple transformations provide no addi-
tional benefit to visual-attention research, so straightforward
model comparison using measures such as similarity score [16]
is irrelevant. We believe the results of a fair comparison should

be unaffected by these simple transformations.
An obvious way to achieve such behavior is to compute

the optimal transformations for each model, maximizing its
quality for a training data set. The transformed models can then
be compared using common techniques, since no competitor
employs the simple transforms better than any other. Note
that the described procedure can also improve the quality of
existing models and tune them for particular applications. It’s
especially useful for video compression in which each kind of
artistic content has its own distinctive “saliency pattern.”

The simple transformations discussed above can be repre-
sented by a vector of their parameters. The blending with the
center-prior image is described by the blending weight and
the blending image, depicted as a two-dimensional normal
distribution. The brightness correction is determined by a
monotonic function in gray scale, and blurring is determined by
a Gaussian-filter kernel. Choosing the optimal parameters for
a model, however, is a nontrivial global-optimization problem,
because its cost function depends on an enormous amount
of data (thousands of maps of predicted and ground-truth
saliency). Therefore, it usually involves a computationally
complex function with many local minima. Also, the decision
space for this task has numerous dimensions: encoding just the
brightness-correction function for 8-bit saliency maps requires
at least 256 numbers. Some approaches to solving this problem
have been proposed, however.

The authors of [7] reduce the parameter space to six
numbers: five describe the brightness-correction function, and
the sixth is the blending weight of the precomputed center-
prior image. They use a gradient-descent algorithm to get
suboptimal values for these parameters. Since the cost function
has many local minima, they repeat the optimization procedure
multiple times from different initial points in an attempt to find
the global minimum. The evaluation methodology proposed
in [8] employs the histogram-matching algorithm to estimate



brightness correction; it determines the radius of the Gaussian
blurring filter and the weight of the center-prior image by
performing an independent exhaustive search in a certain range.
Neither approach can guarantee globally optimal parameters,
however. Moreover, they have high computational complexity,
because they each employ some kind of exhaustive search for
the complex cost function.

For our evaluation we developed a method that for any
saliency model can find the exact globally optimal blending
weight and brightness-correction function simultaneously in
terms of MSE.

A. Proposed evaluation method

If we consider a method of choosing optimal transforma-
tions [7] and substitute the similarity-score (SS) measure [16]
in its cost function along with the MSE, the saliency maps of
the transformed models will remain visually similar. Since MSE
is a quadratic function, this substitution simplifies the structure
of the cost function, but it still contains strong nonlinear
dependencies resulting from the complex parameterization
of the brightness-correction function. Fortunately, the naı̈ve
parameterization that maps 256 values (most saliency maps
are stored with 8-bit depth) allows us to eliminate these
nonlinearities and reduce the optimization task to the quadratic
programming problem. Moreover, increasing the number of
introduced parameters improves generalization performance of
the transformation.

We omit the blurring step because it significantly complicates
the cost function and provides an insignificant gain [8].

B. Formal method description

Let SMi and GTi be the respective predicted and ground-
truth saliency maps for the ith frame, and let CP be a
precomputed center-prior image. The blending weight is
denoted by β, and p ∈ R2 is the pixel position. The cost
function is then

C(β,M) =
∑
i,p

(
M(SMi

p) + βCPp −GTip
)2
, (3)

where M : R+ → R+ is the brightness-correction function.
Since we store saliency maps as 8-bit images, we can represent
this function by the vector m ∈ RN , N = 256, such that
M(s) = ms ∈ R+ for any saliency value s ∈ N+, with
s < N . Then we can consider C to be the quadratic function
of real-valued arguments β and m, so the solution of the
following quadratic programming problem should yield the
optimal parameter values:

(β,m) = arg min
β>0

0<mi<mi+1

∑
i,p

(
mSMi

p
+ βCPp −GTip

)2
. (4)

The constraints guarantee that the brightness-correction
function m ∈ RN is monotone. This task has a canonical
matrix form:

(β,m) = arg min
x1>0

0<xi<xi+1,i>1

1

2
xTHx + fT x + c, (5)

where x = (β,m) ∈ RN+1 contains the target parameters;
matrix H ∈ R(N+1)×(N+1), vector f ∈ RN+1 and scalar c
derive explicitly from (3) and define the optimization task. H
is a Hermitian sparse matrix containing nonzero elements only
in the first row, first column and main diagonal. Moreover,
H is a positive-definite matrix, so the quadratic programming
task is convex and easily solved using any one of numerous
approaches (we use the interior-point method).

As in [7], we precompute the center-prior image CP. We treat
CP as the two-dimensional normal distribution and estimate
its covariance matrix and mean vector from the ground-truth
distribution GT averaged across all frames.

C. Method summary

Our proposed evaluation method is simple and has low
computational complexity. The algorithm makes only two
passes over the input sequences to compute the final score.
On the first pass, it reads GTi to compute CP. On the second
pass, it reads SMi and GTi to compute H, f and c from (5)
and to estimate the optimal parameters. Both passes consume
only O(N) memory and involve no extra computations.

Solving the task described in (4) is fast and a solution is
globally optimal because the expression for the cost function
uses a compact matrix representation (5) and has a simple
convex structure. We compute the final MSE by substituting
the optimal parameters into the compact presentation of the
cost function; no extra passes are required. We convert the
MSE to the more intuitive PSNR and use it as the final score.

The low complexity of the transformations allows us to
improve compression of saliency-aware artistic video content.
Fitting the simple transformations of an underlying saliency
model requires a small amount of ground-truth saliency data
for the target content (a TV show or film). Afterwards, the
remaining portions of the target content can be compressed
more efficiently using the transformed model because of that
model’s greater quality.

The source code for the method, along with a detailed
derivation of (5), is available at the project page.

D. Comparison results

Figure 3 shows the comparison results for 15 saliency models,
including 12 automatic methods; Figure 3 shows example
model predictions. We used a dataset from [7] divided in half
to form a training part and a test part. Despite training the
transformation parameters on isolated data, these parameters
still deliver a significant improvement on the test video for
all models. The substantial benefits and low complexity of
our transformation-tuning algorithm motivated us to include
it as a postprocessing step in our model for saliency-aware
compression (Section V).

As we have shown, the results from single-observer eye
tracking are significantly better than those from automatic
saliency models. Note that the model proposed by Judd et al. [8]
outperformed “single observer” on an image-saliency-prediction
benchmark. Nevertheless, our comparison showed the opposite
result for video sequences. This situation demonstrates the



power of motion features and temporal coherence in predicting
saliency. The correctness of our comparison goals is confirmed
by the fact that applying the transformations causes all
automatic models to produce similar quality and significantly
changes their ranking. Worth noting is that our proposed method
(using data from a single observer) offers quality similar to
that of two-observer eye tracking.

V. SALIENCY-AWARE ENCODING

In this section we describe a saliency-aware modification
of the x264 [11] encoder that we used for our compression
experiments; this modification is publicly available. We also
address the question of automatic quality measurement and
present both objective and subjective evaluations of our
semiautomatic model’s performance on video compression.

A. Video-Encoder Implementation

The main idea of saliency-based compression is clear—
allocating bits in favor of salient regions—yet the exact
number of bits that should be transferred to the region of
interest is a controversial question. Moreover, the compression
artifacts that bit reallocation introduces can change the saliency
distribution [31].

Ideally, a saliency favoring bit allocation should maximize
the perceptual quality of the output video. But automatic
objective measures such as the widely used SSIM and PSNR
are pixel or patch based and are unable to capture the uneven
attention distributions that are critical for proper saliency-aware
compression.

Our modification of the x264 encoder has two additional
command-line parameters, p and b, controlling the amount of
bit allocation in salient regions. The result is that each frame
macroblock whose saliency is below the pth percentile receives
b percent of the bit rate. In other words, 100 − p percent of
most salient pixels in a frame receive 100− b percent of the bit
rate. Such parameters are easy to use, yet their implementation
is nontrivial given that unless the compression uses multiple
passes, the encoder cannot determine the required bit rate for
a given frame. We can instead, however, roughly evaluate the
resulting bit rate as a sum of macroblock-size predictions based
on their quantizers. Figure 4 shows the empirical estimation
of a macroblock size with respect to a quantization parameter
for x264’s “constant quantizer” mode over 15 test videos.

Let Q : R2 → R+ be a quantizer map of the currently
processed frame estimated by the unmodified x264, Q′ : R2 →
R+ be a saliency-aware quantizer map, B : R+ → R+ be a
function of macroblock-size prediction (Figure 4), S : R2 →
[0; 1] be a saliency map downscaled to the resolution of Q, and
sp be the value of its pth percentile, where SP = max(S−sp, 0)
and SN = max(sp−S, 0). Then, applying the above definitions
for p and b and considering that SP and SN are defined up
to linear scaling, we obtain the following system for Q′:
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Q′ = Q+ αSP− βSN∑
i,j:SN>0

B(Q′i,j) =
b

100

∑
i,j

B(Qi,j)

∑
i,j:SP≥0

B(Q′i,j) =

(
1− b

100

)∑
i,j

B(Qi,j).

(6)

Now we can get an explicit expression for Q′ by calculating α
and β from the last two equations and substituting them into
the first.

B. Subjective quality evaluation

Because rate-distortion curves have a logarithmic nature,
only low-bit-rate encoding can benefit from attention modeling.
Otherwise, the quality increase in the region of interest will be
negligible compared with the distortion introduced outside that
region. Selection of the highest bit rate for which saliency-aware
compression still makes sense is an open research problem
that we do not address in this paper.

In this section we also provide a subjective evaluation of
our proposed saliency-aware encoder relative to the underlying
x264 encoder; we chose a fixed-quality/variable-bit-rate strategy.
Because our quality estimations are comparative rather than
absolute, however, we were unable to obtain the entire rate-
distortion curve for a reasonable number of comparisons. Thus,
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we restricted saliency-aware encoding to a 1000 kbps bit rate
and varied the original x264 bit rate until we achieved equal
quality.

We showed Amazon Mechanical Turk participants a se-
quence of video pairs, and for each pair we asked them to
choose the video with better quality or to indicate that the
videos are approximately equal. We paid participants $0.05 for
12 pairs, 2 of which were hidden quality-control comparisons
between x264 videos with 1000 kbps and 2500 kbps bit rates.
To accept the data from a given individual, we required correct
choices for both control comparisons. We tested the encoders
on 12 video sequences ranging from 16 to 20 seconds in
duration and compared four x264 bit rates from 1000 kbps to
1500 kbps with saliency-aware compression, for which we used
saliency maps estimated by our method and eye-tracking data
from a single observer with the best ground-truth prediction.

Figure 5 shows the choice ratio for saliency-aware videos
(with a fixed 1000 kbps bit rate) instead of x264 videos for
each of four bit rates. Interpolating them, we denoted the
equal-quality point by computing the bit rate for the x264
videos at which their subjective quality should match that of
the saliency-aware videos. We acquired the above-mentioned
figure during the subjective experiment in which the proposed
encoder parameters were p = 80% and b = 70%; its equal-
quality point is at 1300 kbps, so our proposed encoder and
saliency model can save 23% of the bit rate (300 kbps).

In total, we conducted 12 analogous experiments with
different encoder parameters and different participants; our
data corresponds to the experiment in which we obtained
the maximum bit-rate gain. All experiments involved 346
participants, yielding 3460 pairwise comparisons.

C. Objective quality evaluation

To objectively evaluate the quality of our attention-based
compression, we chose the simple EWSSIM metric [7] which
is a weighted sum of per-pixel SSIM values using ground-truth
saliency as weights. Figure 7 presents rate-distortion curves
for different models. Note that the ranking of the models by
EWSSIM and the similarity to ground-truth saliency (Figure 3)
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Fig. 7. Objective evaluation of our visual-attention model applied to video
compression. Note that the actual bit-rate gain depends on the distortion of
the non-salient region, and the optimal choice is a matter for future research.
Here we conservatively chose p = 80% and b = 70% for all models.

are alike. In particular, our model has the same quality as
the average “two observers” model. As in Section IV-D, we
performed the evaluation on the same test part of the data set
using the same model transformations.

We chose the conservative compression-parameter values
p = 80% and b = 70% and received 24% bit-rate savings
according to the EWSSIM metric versus 23% according to
the subjective evaluation using the same parameters (see the
per-frame examples our project page). But these parameters
are not EWSSIM optimal (setting p = 85% will yield a higher
gain). Moreover, we found that accurate models benefit from
more-aggressive presets. For instance, a preset of p = 85%
and b = 55% is optimal for ground-truth saliency but one
of the worst for automatic models. Unfortunately, EWSSIM-
optimal presets distort non-salient regions and degrade the
visual-quality perception of a sequence. A saliency-aware
full-reference metric that correlates highly with subjective
evaluations is necessary to automatically adjust the attention-
based compression, but it is a topic of further research.

Since the proposed encoder implicitly controls quality by
linearly changing macroblock quantizers, we performed a series
of tests to validate the encoder and estimate the dependence of
pixel distortions on pixel saliency. We fixed b and the target bit
rate, then made a set of compressed videos using ground-truth
saliency and various p values in the 75–99% range.

First we checked that the actual video bit rates deviate from
the target bit rate by no more than 1%. Then, in each video we
grouped pixels by their saliency value and computed the average
PSNR for each group. We thus estimated how pixel distortions
depend on saliency and p. Figure 6 shows this dependence for
two different p values (and for x264), it confirms that quality
increases with saliency and that lower p values produce more-
uniform distortions. Despite compression uniformity, the x264
curve is strictly decreasing, since more-complex regions are

http://compression.ru/video/savam/


usually more salient. Also, the least-salient regions contain
a lot of flat and efficiently encoded blocks, which explains
why the curves for the modified encoder decrease initially. The
remaining part of these curves, however, is increasing and can
be considered linear in most practical cases and has a steeper
slope for more-aggressive presets.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduce a novel method for saliency-map
estimation using postprocessing of eye-tracking data for a single
observer. Our objective comparison shows that our proposed
method significantly outperforms other visual-attention models
and that its quality is as good as that of the average “two
observers” model.

For this research we paid special attention to the quality-
measurement procedure. Having managed to improve many
modern visual-attention models by applying brightness correc-
tion and “center prior,” we designed the evaluation pipeline to
eliminate the effect of these simple transformations.

To show the practicality of our model, we modified the x264
video encoder and added saliency-map support. The encoder
is publicly available for other studies.

Also, both objective and subjective evaluations of the encoder
performance were conducted in which our attention model
gave 23% bitrate savings in comparison with regular x264
and showed the same performance as eye-tracking from two
observers.

Also, we conducted both objective and subjective evaluations
of encoder performance; for these evaluations, our attention
model yielded 23% bit-rate savings compared with regular
x264 and showed the same performance as eye tracking for
two observers. We plan to enhance the temporal-propagation
algorithm using recurrent neural networks and integrate it
into modern video codecs. Also, we believe development of a
full-reference metric for saliency-aware video quality derived
from subjective evaluations is promising, since it would enable
more-optimal bit allocation and perform more-representative
objective comparisons.

REFERENCES

[1] A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A. Efros, “Data-driven
visual similarity for cross-domain image matching,” ACM Transactions
on Graphics (TOG), vol. 30, no. 6, p. 154, 2011.

[2] D. Culibrk, M. Mirkovic, V. Zlokolica, M. Pokric, V. Crnojevic, and
D. Kukolj, “Salient motion features for video quality assessment,” IEEE
Transactions on Image Processing (TIP), vol. 20, no. 4, pp. 948–958,
2011.

[3] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency de-
tection,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 34, no. 10, pp. 1915–1926, 2012.

[4] C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compression,”
IEEE Transactions on Image Processing (TIP), vol. 19, no. 1, pp. 185–
198, 2010.

[5] Cisco Visual Networking Index, “Global mobile data traffic forecast
update, 2015–2020,” Cisco white paper, 2016.

[6] C. V. N. Index, “The zettabyte era–trends and analysis,” Cisco white
paper, 2014.

[7] Y. Gitman, M. Erofeev, D. Vatolin, B. Andrey, and F. Alexey, “Semiauto-
matic visual-attention modeling and its application to video compression,”
in International Conference on Image Processing (ICIP), 2014, pp. 1105–
1109.

[8] T. Judd, F. Durand, and A. Torralba, “A benchmark of computational
models of saliency to predict human fixations,” Computer Science and
Artificial Intelligence Lab, Massachusetts Institute of Technology, Tech.
Rep., 2012.

[9] L. Itti, “Automatic foveation for video compression using a neurobiolog-
ical model of visual attention,” IEEE Transactions on Image Processing
(TIP), vol. 13, no. 10, pp. 1304–1318, 2004.

[10] S.-P. Lu and S.-H. Zhang, “Saliency-based fidelity adaptation prepro-
cessing for video coding,” Journal of Computer Science and Technology,
vol. 26, no. 1, pp. 195–202, 2011.

[11] “x264 software video encoder,” http://www.videolan.org/developers/x264.
html.

[12] M. Land and B. Tatler, “How our eyes question the world,” in Looking
and Acting: Vision and Eye Movements in Natural Behaviour. Oxford
University Press, 2009.

[13] R. Margolin, L. Zelnik-Manor, and A. Tal, “Saliency for image manipu-
lation,” The Visual Computer, pp. 1–12, 2013.

[14] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,”
in Computer Vision and Pattern Recognition (CVPR), 2007, pp. 1–8.

[15] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in
Advances in Neural Information Processing Systems (NIPS), vol. 19,
2007, pp. 545–552.

[16] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict
where humans look,” in International Conference on Computer Vision
(ICCV), 2009, pp. 2106–2113.

[17] R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency detection by multi-
context deep learning,” in Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1265–1274.

[18] A. L. Yarbus, Eye movements during perception of complex objects.
Springer, 1967.

[19] Z. Li, S. Qin, and L. Itti, “Visual attention guided bit allocation in video
compression,” Image and Vision Computing, vol. 29, no. 1, pp. 1–14,
2011.

[20] R. Gupta, M. T. Khanna, and S. Chaudhury, “Visual saliency guided
video compression algorithm,” Signal Processing: Image Communication,
vol. 28, no. 9, pp. 1006–1022, 2013.

[21] H. Hadizadeh and I. Bajic, “Saliency-preserving video compression,” in
International Conference on Multimedia and Expo (ICME), 2011, pp.
1–6.

[22] H. Hadizadeh, “Visual saliency in video compression and transmission,”
Ph.D. dissertation, School of Engineering Science, Simon Fraser Univer-
sity, 2013.

[23] N. Riche, M. Mancas, B. Gosselin, and T. Dutoit, “RARE: A new bottom-
up saliency model,” in International Conference on Image Processing
(ICIP), 2012, pp. 641–644.

[24] H. J. Seo and P. Milanfar, “Nonparametric bottom-up saliency detection
by self-resemblance,” in IEEE International Workshop on Computer
Vision and Pattern Recognition, 2009, pp. 45–52.

[25] Q. Zhao and C. Koch, “Learning a saliency map using fixated locations
in natural scenes,” Journal of Vision, vol. 11, no. 3, 2011.

[26] J. Li, M. D. Levine, X. An, X. Xu, and H. He, “Visual saliency based
on scale-space analysis in the frequency domain,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 35, no. 4, pp.
996–1010, 2013.

[27] N. Bruce and J. Tsotsos, “Saliency based on information maximization,”
in Advances in Neural Information Processing Systems (NIPS), 2005, pp.
155–162.

[28] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “SUN:
A Bayesian framework for saliency using natural statistics,” Journal of
Vision, vol. 8, no. 7, pp. 1–20, 2008.

[29] M. P. Aivar, M. M. Hayhoe, C. L. Chizk, and R. E. B. Mruczek, “Spatial
memory and saccadic targeting in a natural task,” Journal of Vision,
vol. 5, no. 3, 2005.

[30] K. Simonyan, S. Grishin, D. Vatolin, and D. Popov, “Fast video super-
resolution via classification,” in International Conference on Image
Processing (ICIP), 2008, pp. 349–352.

[31] X. Min, G. Zhai, Z. Gao, and C. Hu, “Influence of compression artifacts
on visual attention,” in International Conference on Multimedia and
Expo (ICME), 2014, pp. 1–6.

http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html

