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Abstract

We investigate a type of lossless source code called a grammar based code, which, in
response to any input data string x over a fixed finite alphabet, selects a context-free
grammar (x representing x in the sense that x is the unique string belonging to the lan-
guage generated by Gx. Lossless compression of x takes place indirectly via compression
of the production rules of the grammar Gx. It is shown that, subject to some mild restric-
tions, a grammar based code is a universal code with respect to the family of finite state
information sources over the finite alphabet. Redundancy bounds for grammar based

codes are established. Reduction rules for designing grammar based codes are presented.

Index Terms: lossless coding, universal coding, redundancy, context-free grammars,

entropy, Kolmogorov complexity, Chomsky hierarchy



1 Introduction

Grammars (especially context-free grammars) have many applications in engineering and
computer science. Some of these applications are speech recognition ([8], Chapter 13),
image understanding ([22], p. 289), compiler design [1], and language modeling ([10],
Theorems 4.5, 4.6). In this paper, we shall be interested in using context-free grammars
for lossless data compression. There has been some previous work of this nature, including
the papers [3] [2] [11] [14] [24] [18]. Two approaches have been used. In one of these
approaches (as illustrated in [2] [11] [14]), one fixes a context-free grammar G, known
to both encoder and decoder, such that the language generated by GG contains all of the
data strings that are to be compressed. To compress a particular data string, one then
compresses the derivation tree ([2], p. 844) showing how the given string is derived from
the start symbol of the grammar (. In the second of the two approaches (exemplified
by the papers [3] [24] [18]), a different context-free grammar Gy is assigned to each data
string x, so that the language generated by Gy is {x}. If the data string x is to be
compressed, the encoder transmits codebits to the decoder that allow reconstruction of
the grammar Gy, from which the decoder infers x. This second approach is the approach
that we employ in this paper. We shall put forth a class of lossless source codes that
employ this approach that we call grammar based codes. Unlike previous workers using
the second approach, we place our results in an information-theoretic perspective, showing
how to properly design a grammar based code so that it will be a universal code with
respect to the family of finite state information sources on a fixed finite alphabet.

In this introduction, we wish to give the reader an informal notion of the idea of a
grammar based code. For this purpose, we do not need a precise definition of the concept
of context-free grammar (this will be done in the next section). All we need to know
about a context-free grammar G here is that it furnishes us with some production rules
via which we can construct certain sequences over a finite alphabet which form what is
called the language generated by G, denoted by L(G).

A grammar based code consists of encoder and decoder:

e Figure 1 depicts the encoder structure. Letting x denote the data string that is

to be compressed, consisting of finitely many terms chosen from some fixed finite



alphabet, the grammar transform in Figure 1 constructs a context-free grammar Gy
satisfying the property that L(Gyx) = {x}, which tells us that x may be inferred from
(/x because x is the unique string belonging to the language L(GYx). The grammar
encoder in Figure 1 assigns to the grammar Gy a binary codeword which is denoted

B(Gy).

e When the decoder is presented with the codeword B(Gx), the data string x is
recovered by first reconstructing the grammar Gy, and then inferring x from the

production rules of Gy.

From the preceding, the reader can see that our philosophy is not to directly compress
the data string x; instead, we try to “explain” x by finding a grammar Gy that is simple
and generates x in the sense that L(Gx) = {x}. Since x can be recovered from Gy, we
can compress Gy instead of x. As the grammar G/ that we shall use to represent x will
be simple, we will get good compression by compressing Gy.

The main results of this paper (Theorems 7 and 8) tell us that, under some weak
restrictions, a grammar based code is a universal lossless source code for any finite state
information source. We shall be able to obtain specific redundancy bounds for grammar
based codes with respect to finite state information sources. Also, we shall see how to
design efficient grammar based codes by means of reduction rules.

As a result of this paper, the code designer is afforded with more flexibility in universal
lossless source code design. For example, for some data strings, a properly designed
grammar based code yields better compression performance than that afforded by the
Lempel-Ziv universal data compression algorithm [27].

Notation and Terminology. We explain the following notations and terminologies

used throughout the paper:
e |S| denotes the cardinality of a finite set S.
o |x| denotes the length of a string x of finite length.

e [x] denotes the smallest positive integer greater than or equal to the real number

x.



o S* denotes the set of all strings of finite length whose entries come from the finite
set &, including the empty string. We represent each nonempty string in §* mul-
tiplicatively and uniquely as zixy---x,, where n is the length of the string and

T1,T9,...,2, €5; we write the empty string in $* as 1s.

o If x and y are elements of §*, we define the product xy to be the element of §* such

that

(i) If @ = 1g, then a2y = y; if y = s, then 2y = z.
(ii) If x # 15 and y # 1s, then

xy = T1Lg """ xnylyz . ym7

where x125--- 2, and y1ys - - - y,, are the unique multiplicative representations

of & and y, respectively.

The multiplication operation (z,y) — xy on S* is associative. Therefore, given
51,82,...,5; € §*, the product sys5---s; is an unambiguously defined element of
S*. (The set §*, with the multiplication we have defined, is called a multiplicative

monoid.)

e A parsing of a string u € S* is any sequence (uy, Usg, . .., Uy ) in which wy, ug, ..., Uy,

are strings in §* such that wyus - - -, = w.

e ST denotes the set $* with the empty string 1s removed.

For each positive integer n, S™ denotes the set of all strings in §* of length n.

All logarithms are to base two.

2 Admissible Grammars

In this section, we introduce a subclass of the class of all context-free grammars called

the class of admissible grammars. For each admissible grammar G, it is guaranteed that

L(G) = {x} (2.1)
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will hold for some string x. A simple test is given, which will allow us to determine
whether or not a grammar is admissible (Theorem 2). We will also present an algorithm
for the calculation of the string x in (2.1), from a given admissible grammar ¢ (Theorem
3).

A production rule is an expression of the form
A=« (2.2)

where A € § and o € §* for some finite set S. The left member (resp., right member)
of the production rule (2.2) is defined to be A (resp., a). Following [10], a context-free
grammar is a quadruple G = (V, T, P, S) in which

e V is a finite nonempty set whose elements shall be called variables.

e T is a finite nonempty set, disjoint from V', whose elements shall be called terminal

symbols.

e P is a finite set of production rules whose left members come from V and whose
right members come from (V U T)*. We assume that for each A € V| there is at

least one production rule in P whose left member is A.
e S is a special variable in V' called the start symbol.

We adopt the following notational conventions. We shall denote the set of variables, the
set of terminal symbols, and the set of production rules for a context-free grammar G' by
V(G), T(G), P(G), respectively. When a variable in V() is denoted “S”, that will always
mean that the variable is the start symbol. Upper case symbols A, B,C, D, ... (with or
without subscripts) are used to denote variables, and lower case symbols a, b, ¢, d, ... (with
or without subscripts) are used to denote terminal symbols. Given a context-free grammar
(7, and a variable A € V((), there may exist a unique production rule in P((Z) whose left
member is A — we shall refer to this production rule as “the A production rule.”

Let G be a context-free grammar. If o and g are strings in (V(G) U T(G))*,

o We write o = 3 if there are strings o, oy and a production rule A — 5 of G such

that (aq, A, ag) is a parsing of o and (ay,v, a2) is a parsing of 3. (In other words,
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we obtain [ from « by replacing some variable in « with the right member of a

production rule whose left member is that variable.)

o We write @ = 3 if there exists a sequence of strings oy, as, . .., oy such that

. q, q, q, .
O =aq] = Q3,03 = Qz,...,0p_ 1 — ap =f3

The language L((G) generated by (i is defined by:
L(G)é{ueT*:Séu}

We are now ready to define the notion of an admissible grammar. We define a context-

free grammar GG to be admissible if all of the following properties hold:

e (i is deterministic. This means that for each variable A € V((), there is exactly

one production rule in P(G') whose left member is A.
e The empty string is not the right member of any production rule in P(G).
e L(() is nonempty.

e (7 has no useless symbols. By this, we mean that for each symbol Y € V(GHYUT(G),
Y # 5, there exist finitely many strings oy, aq, ..., a, such that at least one of the

strings contains Y and

S =1 5,00 = s, ..., 01 —a, € L(G)

It can be seen that for any deterministic grammar (7, the language L((G) is either
empty or consists of exactly one string. Therefore, if (G is an admissible grammar, there
exists a unique string x € T(G)" such that L(G) = {x}. This string x shall be called the
data string represented by G. We shall also say that GG represents x.

When we want to specify an admissible grammar (¢, we need only list the production
rules of (7, because V(G),T((), and the start symbol S can be uniquely inferred from
the production rules. The set of variables V() will consist of the left members of the



production rules, the set of terminal symbols T'(G) will consist of the symbols which are
not variables and which appear in the right members of the production rules, and the
start symbol 5 is the unique variable which does not appear in the right members of the
production rules.

Fxample 1. Suppose that a grammar G (which will be shown to be admissible in

Example 2) has production rules:

Ap — aA1AyA;
A — ab

Ay — Ad

As — Agb

Looking at the left members of the production rules, we see that V(G) = { Ao, A1, As, As}.
Of these four variables, Ay is the only one not appearing in the right members, and so the
start symbol of the grammar GG is S = Ag. Striking out Ay, As, A3 from the right members,
the remaining symbols give us T(G) = {a,b}. It will be determined in Example 3 that
the data string represented by G is aababbabbb. This means that L(G) = {aababbabbb}.

Let § be a finite set. An endomorphism on §* is a mapping f from S* into itself such
that the following two conditions hold:

® f(ls) = 15
o fluruz) = flur)f(uz), ui,ug € S*

Notice that an endomorphism f on §* is uniquely determined once f(u) € &* has been
specified for every u € S.
Given an endomorphism f on S*, we can define a family of endomorphisms {f* : k =

0,1,2,...} on &* by:

f° = identity map
r= g
fiw) = FU7 ), k=2, ue st



Following [17] [21], an L-system® is a triple (S, f,u) in which
o S is a finite set.

e f is an endomorphism on S*.

o ucS”

The fized point u* (if it exists) of an L-system (S, f,u) is the unique string u* such
that

o w e {ffu):k=0,1,2,...}
o f(u")=u"

Suppose G is a deterministic context-free grammar in which the empty string is not
the right member of any production rule. We define fs to be the endomorphism on

(V(G)UT(G))* such that
e fula)=a, a€T(G)
o If A — o is a production rule of GG, then fu(A) = a.

We have recounted standard background material on context-free grammars and -
systems. We now present new material which will allow us to reconstruct a data string
from an admissible grammar which represents it.

The following theorem indicates why L-systems are important to us. (The proof, which

is almost self-evident, is omitted.)

Theorem 1 Let GG be an admissible grammar. Then the data string x represented by G
can be characterized as the fived point of the L-system (V(G)U T(G), fa,S).

Derivation Graphs. Let (G be a deterministic context-free grammar for which the
empty string is not the right member of any production rule. We can associate with

(i a finite directed graph called the derivation graph of GG. There are |V(G) U T(G)]
vertices in the derivation graph of (G. Each vertex of the derivation graph is labelled with

!sometimes referred to as a DOL system



a symbol from V(G) U T(G), with no two vertices carrying the same label. There are
|T(G)| terminal vertices in the derivation graph, whose labels come from T'((), whereas
the labels on the nonterminal vertices come from V(). If a nonterminal vertex is labelled
by a variable A € V(G), and if A — Y1Y3--- Y} is the A production rule, then there are k
edges emanating from the vertex; the labels on the vertices at which these edges terminate
are Y1,Y,, ..., Yy, respectively. We shall refer to a vertex of the derivation graph of ¢
labelled by Y € V(G) U T(G) as the “Y vertex.”

We can use the derivation graph of a grammar GG to deduce certain properties of the
grammar. Before we do that, we discuss some characteristics of directed graphs. A path
in a directed graph is a finite or infinite sequence {¢;} of edges of the graph, such that for
every pair of consecutive edges (e;, €,41) from the sequence, the edge e; terminates at the
vertex where edge e;41 begins. A directed graph is said to be rooted at one of its vertices
v if for each vertex v’ £ v of the graph, there is a path whose first edge begins at v and
whose last edge ends at v’. A path in a directed graph which begins and ends at the same
vertex is called a cycle. A directed graph with no cycles is called an acyclic graph.

The following theorem, proved in Appendix A, gives us some simple conditions to

check to see whether a grammar is admissible.

Theorem 2 Let GG be a deterministic context-free grammar such that the empty string is
not the right member of any production rule of GG. Then the following three statements

are equivalent:
(1) G is admissible.
(i1) The derivation graph of G is acyclic and is rooted at the S vertex.

(iii) fg/(G)l(S) € T(G)* and each symbol in V(G) U T(G) is an entry of at least one of
the strings f&(S), 1 =0,1,...,|[V(G)].

Fxample 2. The grammar G in Example 1 has the following derivation graph:



Notice that the graph is acyclic, and is rooted at the vertex labelled with the start symbol
S = Ap . Theorem 2 allows us to conclude that the grammar G is admissible.
The following theorem, which follows from Theorem 2, gives us an algorithm for com-

puting the data string represented by an admissible grammar.

Theorem 3 Let G be an admissible grammar. Then the data string x represented by G

is computed by doing the calculation
V(G
x = fi () (2.3)

Example 3. Let G again be the grammar in Example 1. From Example 2, we know
that (¢ is admissible. Since |V(G)| = 4, Theorem 3 tells us that the data string represented
by G is f&(Ag), which we compute as follows:

fa(Ao) = aA1AA;s
fE(Ag) = aabAbAsb
f2(Ao) = aababbAbb
FA(A)) = aababbabbb

Notice that condition (iii) of Theorem 2 holds. (Each of the symbols A;, Az, A3, a,b

appears at least once in the strings computed above; also, f&(S) is a string in T(G)*.)
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This gives us another verification that G is admissible.
The following theorem generalizes Theorem 1 and follows easily from Theorem 2 in
combination with Lemma 4 of Appendix A. It shall be useful to us in subsequent sections

of the paper.

Theorem 4 Let G be an admissible context-free grammar. Let u be any string in (V(G)U
T(G))*. Then, the L-system (V(G)UT(G), fa,u) has a fived point v*, and u* € T(G)*.

The fixed point u* is computable via the formula

|V(G)|(u)

*
u = G

A useful endomorphism. Let G be an admissible grammar. In view of Theorem 4,
we may define a mapping f& from (V(G)UT(G))* into itself such that, if u is any string
in (V(G)UT(G))*, then f&(u) is the fixed point of the L-system (V(G) U T(G), fa,u).
The following result gives us a number of properties of the mapping f& that shall be

needed later on.

Theorem 5 Let G be an admissible grammar. Then:
(1) f& is an endomorphism on (V(G)UT(G))*.
(i) f&(u) € T(G)T for each u € (V(G)UT(G))*.
(iii) For each v € (V(G)UT(G))*,
fe(w) = 16 Nw)
(iv) If A — «a is a production rule of G, then
f&(A) =[5 (a)

Proof of Theorem 5. Properties (i)-(ii) are trivially seen to be true. Property (iii)

is a consequence of Theorem 4. Property (iv) follows from THE fact that if A — « is

a production rule, then the sequence {f&(a) : ¢+ > 1} is obtained by throwing away the
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first term of the sequence {f5(A) : 7 > 0}, whence the fixed points arising from these

sequences are the same.

3 Grammar Transforms

The grammar transform in Figure 1 is the most important component of a grammar based
code. Formally, a grammar transform shall be defined as a mapping which assigns to each
data string a grammar which represents the string. This section is devoted to the study
of grammar transforms. We shall focus on two general classes of grammar transforms,
the asympotically compact grammar transforms (Section 3.1) and the irreducible grammar
transforms (Section 3.2).

For the rest of the paper, we let A denote an arbitrary finite set of size at least two;
the set A shall serve as the alphabet from which our data strings are to be drawn. We
shall call a string in AT an A-string. We fix a countably infinite set of symbols

{Ao, A1, Ay, As, .. ) (3.4)

from which we will select the variables to be used in forming the grammars to be employed

in a grammar transform. We assume that each of the symbols in (3.4) is not a member
of the alphabet A.
We define G(A) to be the set of all grammars (& satisfying the following properties:

(i) G is admissible.

(i) T(G) C A.

(iii) The start symbol of G is Ay.

(iv) V(G) = {Ao, A1, Asy. ., Ayt }-

(v) If we list the variables in V(&) in order of their first left-to-right appearance in the

string

FE(AO) L A0) F2(A) -+ & () (3.5)
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then we obtain the list
A07 A17 A27 s 7A|V(G)|—1

Discussion. For the purposes of this paper, the function of a grammar is to represent
a data string. From this point of view, it makes no difference what symbols are used as
the “names” for the variables in V(). Indeed, in reconstructing a data string from a
grammar (¢ which represents it, the variables in V() are “dummy” variables which are
substituted for in the reconstruction process. By means of property (v), we have required
that the variables in V() be named in a fixed way, according to a “canonical ordering”
of the variables in V(). Our canonical ordering is the unique ordering induced by the
depth-first search through the vertices of the derivation graph of G in which the daughter
vertices of a vertex are visited in order of the left-to-right appearance of terms in the right
member of a production rule of GG. It is precisely this ordering that will allow the grammar
decoder (implicit in the proof of Theorem 6 in Section 4) to determine the name of each
new variable that must be decoded (if the decoder has previously dealt with variables
Ay, Ay, ... Ay, then the next new variable that will appear in the decoding process will
be A1)

Given any grammar (G which is not in G(.A), but which satisfies properties (i) and (ii),
one can re-name the variables in V((7) in a unique way so that properties (iii)-(v) will also
be satisfied. This gives us a new grammar, denoted by [(], which is a member of G(A)
and which represents the same data string as . (If a grammar (' is already a member
of G(A), we define [G] = (G.) The grammar [(7] shall be called the canonical form of the
grammar G.

Example 4. Consider the admissible grammar whose production rules are

S — BaA
A — aC
B — Db
¢ — bB
D — ab



One sees that

= 95

= BaA

= DbaaC
= abbaabB
= abbaabDb

Multiplying these strings together as in (3.5), one obtains the string

SBaADbaaC abbaabBabbaabDb

Listing the variables in V(') in order of their first left-to-right appearance in this string,

the following list results:

S, B,A,D,C

Employing this list, we re-name the variables according to the prescription

QO U = T w
R A

Ao
Ay
Az
As
Ay

thereby obtaining the grammar [G] in G({a,b}) whose production rules are

Ao
Ay
Az
As

AraAs
Asb
aAy
ab

L4



The grammars ¢ and [G] both represent the data string abbaababb.

A grammar transform is a mapping from A" into G(A) such that the grammar Gy €
G(A) assigned to each A-string x represents x. We adopt the notational convention of
writing x — Gy to denote a grammar transform. In this notation, x is a generic variable
denoting an arbitrary A-string, and Gy is the grammar in G(A) assigned to x by the
grammar transform.

Definition. In subsequent sections, we shall occasionally make use of a set of gram-
mars G*(A) which is a proper subset of G(A). The set G*(A) consists of all grammars
G € G(A) satisfying the property that f&7(A) # f&°(B) whenever A, B are distinct vari-
ables from V(). At this point, it is not clear to the reader why the smaller set of
grammars G*(A) is needed. This will become clear in Lemma 8 of Appendix B, where use
of a grammar ¢ € G*(A) to represent an A-string x will allow us to set up a one-to-one
correspondence between certain entries of the right members of the production rules of ¢
and substrings of x forming the entries of a parsing of x; this correspondence will allow
us to relate the encoding of the right members of ¢ (as described in Section 4) to the

left-to-right encoding of x in the usual manner of sequential encoders.

3.1 Asymptotically Compact Grammar Transforms

If G is any context-free grammar, let |G| denote the total length of the right members of
the production rules of G. We say that a grammar transform x — Gy is asymptotically

compact if both of the following properties hold:
(i) For each A-string x, the grammar Gy belongs to G*(A).

vy g G
(i1) lim,, o maxxean % =0

Asymptotically compact grammar transforms are important for the following reason:
Employing an asymptotically compact grammar transform as the grammar transform in
Figure 1 yields a grammar based code which is universal (Theorem 7). We present here
two examples of asymptotically compact grammar transforms, the Lempel-Ziv grammar

transform and the bisection grammar transform.
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3.1.1 Lempel-Ziv Grammar Transform

Let x = xy2y -+ 2, be an A-string. Let (uy, ug,...,us) be the Lempel-Ziv parsing of x, by
which we mean the parsing of x established in the paper [15] and used in the 1978 version
of the Lempel-Ziv data compression algorithm [27]. Let S;.(x) be the set of substrings of
x defined by

Si(x) 2 {x} U {ug, ug, ..., ud

For each u € §,.(x), let (s, a,) be the parsing of u in which a, € A, and let A" be a

variable uniquely assigned to u. Let G'* be the admissible grammar such that

o The set of variables and the set of terminal symbols are given by

V(GE) = {A" 1w € SL(x)}
T(Gif) = {a,:u € S.(x)}

e The start symbol is A* and the A* production rule is
AX Ly AW AU . A
e For each u € S;.(x) other than x, the A" production rule is
AY — Ata,
The Lempel-Ziv grammar transform is the mapping x — [G?] from A* into G(A). For

the Lempel-Ziv parsing (uq,...,u;) of an A-string x, let us write ¢ = ¢(x) to emphasize

the dependence of the number of phrases on x. It is well-known that

max (x) = 0( - ) (3.7)

XEA" logn

from which it follows that the Lempel-Ziv grammar transform is asymptotically compact.
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FExample 5. The Lempel-Ziv parsing of the data string x = 010010000001 is (0, 1, 00, 10,
000,001). The grammar G has the production rules

AX - AOAIAOOAIOAOOOAOOI
A% 5 A%

ALY 5 AYQ

AOOO - AOOO

AOOI - AOOl

A = 0

At =1

The grammar [G¥] can be verified by the reader to be the grammar in G*({0,1}) with

the production rules

Ay — A1AA3ALA5 A
Ay — 0

Ay — 1

As — A0

Ay — A0

As —  Aj0

As — Asl

Discussion. The reader of [15] will find notions called producibility and reproducibility
introduced there that allow one to describe a recursive copying process for certain parsings
of a data string (not just the parsing considered above). For each such parsing, it is easy
to construct a grammar which embodies this copying process and represents the given

data string; the grammar we built in Example 5 was just one instance of this paradigm.
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3.1.2 Bisection Grammar Transform

Let x = xy25 - - - &, be an arbitrary A-string. Let S;;5(x) be the following set of substrings

of x:
Shis(x) 2 {x}U{(zi, ziy1,.-yx) (e —=1)/(7—i4+ 1) & log(j — i+ 1) are integers}

For each u € Spi5(x), let A* be a variable uniquely assigned to u. For each u € Spis(x)
of even length, let (s(u, L), s(u, R)) be the parsing of u in which the strings s(u, ) and
s(u, R) are of equal length. Let G5 be the admissible grammar such that

o The set of variables and the set of terminal symbols are given by
V(Giw) = {Au Tu € Sbis(X)}
T(GY) = {u € Sy(x): Jul =1}

e The start symbol is A*.

o If u € Spis(x) and |u| = 1, the A* production rule is
AY = u

o If u € Syis(x) and log |u| is a positive integer, the A* production rule is

AY s As(u,L) As(u,R)

o If u € Spis(x) and log |u| is not an integer (which means that v = x), the A"

production rule is

A" o AAY AT

where (uy,ug,...,us) is the unique parsing of x into strings in Sy;5(x) for which

x| > Jug| > |uz| > ... > |uyl.

The bisection grammar transformis the mapping x — [G¢] from A7 into G(A). In the

paper [13], it is shown that the bisection grammar transform is asymptotically compact,
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and a lossless compression algorithm with good redundancy properties is developed based
upon the bisection grammar transform.

Example 6. For the data string x = 0001010, we have
Spis(x) = {x,0001,01,0,00,1},

and the production rules of the grammar G5 are:

Ax - AOOOIAOIAO
AOOOI - AOOAOI

A% A0A

A oA

A° — 0

Al — 1

We then see that the production rules of [G%*] are given by

Ay — AjA A3
Ay = AgA,
Ay = AzA;
Az — 0

Ay — AzA3
As — 1

3.2 Irreducible Grammar Transforms

We define a context-free grammar GG to be irreducible if the following four properties are

satisfied:

(a.1) G is admissible.

(a.2) If vy, vy are distinct variables in V/(G), then f&(v1) # f&(vs).
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(a.3) Every variable in V() other than the start symbol appears at least twice as an

entry in the right members of the production rules of the grammar G

(a.4) There does not exist any pair Y7, Y5 of symbols in V/(G)UT(G) such that the string
Y1Y, appears more than once in nonoverlapping positions as a substring of the right

members of the production rules for G.

Example 7. The admissible grammar with production rules

ACBBEA
DD1

10

0D

0L

11 (3.8)

m T QW e oW
A T T

can be verified to be an irreducible grammar.

A grammar transform x — G is defined to be an irreducible grammar transform if
each grammar Gy is irreducible. In principle, it is easy to obtain irreducible grammar
transforms. One can start with any grammar transform x — Gy and exploit the presence
of matching substrings in the right members of the production rules of each G to reduce
Gix to an irreducible grammar representing x in finitely many reduction steps. A wealth of
different irreducible grammar transforms are obtained by doing the reductions in different
ways. In Section 6, we develop a systematic approach for reducing grammars to irreducible
grammars, and present examples of irreducible grammar transforms which have yielded

good performance in compression experiments on real data.

4 Entropy and Coding of Grammars

In this section, we define the entropy H(G') of a grammar (¢ € G(A), and present a result
(Theorem 6) stating that we can losslessly encode each G using approximately H(G)
codebits.
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First, we need to define the concept of unnormalized entropy, which will be needed in

this section and in subsequent parts of the paper. Suppose u is either a string wyus - - - u,

in a multiplicative monoid or a parsing (uy,us,...,u,) of a string in a multiplicative
monoid. For each s € {uy,ug,...,u,}, let m(s|u) be the number of entries of « which are
equal to s:

m(sju) = {1l <i<n:u = s}

We define the unnormalized entropy of u to be the following nonnegative real number

H*(u):

H*(u) 2 é}log ( " )

Let G be an arbitrary grammar in G(A); recalling the notation we introduced in
Section 3, we have V(G) = { Ao, A1, Az, ..., Ay (a)|-1}. We define pg to be the following
string of length |G/

pa 2 fo(Ao) fa(Ar) fa(Az) -+ fo(Av)-1) (4.1)

Notice that the string pg is simply the product of the right members of the production
rules in P(G). We define wg to be the string obtained from pg by removing from pg
the first left-to-right appearance of each variable in {A,..., Ay )-1}. We define the
entropy H(G') of the grammar GG to be the number

H(G) & H"(we)

Theorem 6 There is a one-to-one mapping B : G(A) — {0,1}* such that

o [f GGy and Gy are distinet grammars in G(A), then the binary codeword B(Gy) is
not a prefix of the binary codeword B(Gy).

o For each G € G(A), the length of the codeword B((G) satisfies

|B(G)] < [A] +4]G] + [H(G)] (4.2)
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Proof. Given the grammar ¢ € G(A), the binary codeword B((i) has a parsing
(Bl, BQ, Bg, B47 B57 B6) in which

(1) By haslength |V (G)| and indicates what V(G is. (Specifically, By consists of |V (G)|—

1 zeroes followed by a one.)

(ii) B; has length | A| and tells what T'(() is. (For each element of A, transmit a codebit
to indicate whether or not that element is in 7'(().)

(iii) Bs has length |G| and indicates the frequency with which each symbol in (V(G) U
T(G)) — {S} appears in the right members of the production rules of . (Each

frequency is given a unary representation as in (i).)

(iv) By has length |G| and indicates the lengths of the right members of the production
rules of G.

(v) Bs has length |G| and indicates which entries of pg are variables in V() appearing

for the first time as pg is scanned from left to right.

(vi) Bs has length at most [H(()] and indicates what w¢ is. The well-known enumer-
ative encoding technique [4] is used to obtain Bs from wg. This technique exploits
the frequencies of symbols in wg learned from Bs to encode wg into a codeword of
length equal to the smallest integer greater than or equal to the logarithm of the size
of the type class of wg (see [6] or the beginning of Appendix B). From the definition
of H((G) and a standard bound on the size of a type class ([6], Lemma 2.3), it is
clear that the codeword length can be no more than [H(G)].

From wg and the information conveyed by Bs, the string pg can be reconstructed, since
new variables in pg are numbered consecutively as they first appear. From pg and the
information conveyed by By, the right members of the production rules in GG can be
obtained, completing the reconstruction of G from B((G). The total length of the strings
By, By, ..., Bg is at most the right side of (4.2).

Fxample 8. Consider the grammar G € G(.A) with the production rules given in (3.6).
We have

PG = AlaAgAgbaA4abbA1
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wa = abaabbA,

7 7
H(G) H*(weg) = 3log <§) + 3log <§) +log7 =10.14

Substituting H(G), |G| = 11, and |A| = 2 into (4.2), we see that the codeword B(() is
of length no more than 57.

5 Coding Theorems

We embark upon the main section of the paper. A formal definition of the concept of

grammar based code is given. Specific redundancy bounds for a grammar based code with

respect to families of finite state information sources (Theorems 7 and 8) are obtained.
Information sources. An alphabet A information source is defined to be any map-

ping u : A* — [0, 1] such that

plla) =1
px) = Tieap(xa), x€ A

Finite State Sources. Let k be a positive integer. An alphabet A information source
w is called a k-th order finite state source if there is a set § of cardinality k, a symbol
S0 € 8, and nonnegative real numbers {p(s,x|s') : 5,8 € S, @ € A} such that both of the
following hold:

Y op(s,als’) = 1, s€S8 (5.3)
plereg - x,) = Z Hp(si,xﬂsi_l), Tixe - x, € AT (5.4)

51,524,850 €S 1=1

We let A?S(A) denote the family of all alphabet A k-th order finite state sources. We call
members of the set Uk/\fcs(.ﬁl) finite state sources.

Remark. If in addition to (5.3)-(5.4), we require that for each (x,s’), the quantity
p(s,x]s’) is nonvanishing for just one s, then the finite state source p is said to be unifilar.
We point out that our definition of finite state source includes sources which are not

unifilar as well as those which are unifilar.
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Stationary Sources. We define Ay, (A) to be the set of all alphabet A information

sources  for which

u(x) = Y plax), x € A"

a€A
The members of A, (A) are called stationary sources.

Lossless source codes. We define an alphabet A lossless source code to be a pair

¢ = (€4,d4) in which

(1) €4 is a mapping (called the encoder of ¢) which maps each A-string x into a codeword
es(x) € {0,1}*, and 4, is the mapping (called the decoder of ¢) which maps ¢4(x)

back into x; and

(i1) for each n = 1,2,..., and each distinct pair of strings x;,x, in A", the codeword

€4(x1) is not a prefix of the codeword €4(x2).

An alphabet A lossless source code ¢ is defined to be an alphabet A grammar based code

if there is a grammar transform x — G such that
cp(x) = B(Gyx), xe€ AT

The grammar transform in this definition shall be called the grammar transform under-
lying the grammar based code ¢. We isolate two classes of grammar based codes. We let
Cac(A) be the class of all alphabet A grammar based codes for which the underlying gram-
mar transform is asymptotically compact. We let C;,..(A) denote the class of all alphabet
A grammar based codes for which the underlying grammar transform is irreducible.
Redundancy Results. The type of redundancy we employ in this paper is mazimal
pointwise redundancy, a notion of redundancy that has been studied previously [20] [23].
Let A be a family of alphabet A information sources. Let ¢ be an alphabet A lossless
source code. The n-th order maximal pointwise redundancy of ¢ with respect to the

family of sources A is the number defined by

Red, (6, A) £ n~! max sup [les(x)| + log p(x)] (5.5)

xEAR =
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We present two results concerning the asymptotic behavior of the maximal pointwise
redundancy for alphabet A grammar based codes with respect to each family of sources

A?S(A) (k > 1). These are the main results of this paper.

Theorem 7 Let ¢ be a grammar based code from the class Coe(A), and let x — Gy be the
grammar transform underlying ¢. Let {v,} be a sequence of positive numbers converging

to zero such that

max |G| = O(vy)
x€A™ |X|
Then, for every positive integer k,
Red,, (¢, A7,(A)) = O(4(1)) (5.6)

where 7 is the function defined by
v(z) 2 xlog(l/x), = >0

Theorem 8 The class of codes C;,r(A) is a subset of the class of codes Coe(A). Further-

more, for every positive integer k,

log log n
k _
s Ted, (6, A5,(4) = 0 (—bgn )

Remarks.

(i) Theorem 7 tells us that the maximal pointwise redundancies asymptotically decay
to zero for each code in C,.(A); the speed of decay is dependent upon the code.
Theorem 8 tells us that the maximal pointwise redundancies decay to zero uniformly
over the class of codes C;,..(A), with the uniform speed of decay at least as fast as

a constant times log logn/ log n.

(i1) An alphabet A lossless source code ¢ is said to be a weakly minimaz universal code

[7] with respect to a family of alphabet A information sources A if

lim 1" 3 (Jea(3)] + log u(3))pu(x) = 0. i € A

n—00
xEAR
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Theorem 7 tells us that every code in C,.(A) is a weakly minimax universal code
with respect to the family of sources U,A% (A). Tt is then automatic that the codes
in Cy.(A) are each weakly minimax with respect to the family of sources Ay, (A)

(easily established using Markov approximations of stationary sources [9]).

(iii) An alphabet A lossless source code ¢ is said to be a minimaz universal code [7] with

respect to a family of alphabet A information sources A if

Tim 0t sup Y (es(0)] + log (x) () = 0
HEA xc An
Theorem 7 tells us that every code in C,.(A) is a minimax universal code with

respect to each family of sources A?S(A), kE>1.

(iv) J. Ziv and A. Lempel define an individual sequence to be an infinite sequence
(21,22, 23,...) each of whose entries x; belongs to the alphabet A. These authors
[27] [26] have put forth a notion of what it means for an alphabet A lossless source
code to be a universal code with respect to the family of individual sequences. (Leav-
ing aside the technical details, we point out that Ziv and Lempel define a class of
lossless codes called finite state codes, and define a code to be universal if it encodes
each individual sequence asymptotically as well as each finite state code.) It can be

shown that if an alphabet A lossless source code ¢ satisfies

limsup [n~' sup (leg(zizg---2,)| + log u(wrzg - 2,))| <0
n—00 MEA?S(.A)

for every k > 1 and every individual sequence (21, x2,...), then ¢ is a universal
code with respect to the family of individual sequences. This fact, together with
Theorem 7, allows us to conclude that every code in C,.(A) is a universal code with

respect to the family of individual sequences.

The following two lemmas, together with Theorem 6, immediately imply Theorems 7

and 8. They are proved in Appendix B.

Lemma 1 Let x be any A-string, and let G be any grammar in G*(A) which represents
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x. Then, for every positive integer k, and every u € A% (A),

Gl — V(G| +1
H(G) < —log/,c(x)—l—|G|(2—|—10gk)—|—2|x|’y(| | ||X(| ) ) (5.7)
Lemma 2 Let x be any A-string of length at least |A|**. Then
G 121
1G] AL, og | 4] (5.8)

x| = |x[  log[x| —8log |A| -8

for any irreducible grammar G which represents x.

In concluding this section, we remark that our grammar based encoding technique and
Theorems 7 and 8 based on it are predicated on the implicit assumption that a data string
x is first batch processed before formation of a grammar representing x; only after the
batch processing and grammar formation can the grammar then be encoded. An approach
involving less delay is to form and encode production rules of a grammar on the fly as we
sequentially process the data from left to right, with the grammar encoding terminating
simultaneously with the sequential processing of the last data sample. The Improved
Sequential Algorithm of [25] adopts this approach, necessitating a different method for
encoding grammars than used in Section 4, as well as new proofs of the universal coding

theorems.

6 Reduction Rules

We present five reduction rules, such that if an admissible grammar ' is not irreducible,
there will be at least one of the five reduction rules which can be applied to the grammar
(&; any of these rules applicable to G will produce a new admissible grammar G’ satisfying

the properties
(i) G’ represents the same data string that is represented by G.

(ii) G is closer to being irreducible than G (in a sense made clear in the discussion just

prior to Section 6.1).
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Reduction Rule 1. Let (¢ be an admissible grammar. Let A be a variable of ¢ that
appears only once in the right members of the production rules of GG. Let B — aAf be
the unique production rule in which A appears in the right member. Let A — 7 be the

A production rule of (G. Simultaneously do the following to the set of production rules of

G-

o Delete the production rule A — ~ from the production rules of .

e Replace the production rule B — a A3 with the production rule B — a~(3.

Let P’ be the resulting smaller set of production rules. Define G’ to be the unique
admissible grammar whose set of production rules is P’.

Reduction Rule 2. Let G be an admissible grammar. Suppose there is a production
rule

A— OélﬁOézﬁOég (69)

where |3| > 2. Let B be a symbol which does not belong to V(G) U T((G). Perform the

following operations simultaneously to P(G):

e Replace the rule (6.9) with the rule

A— OélBOéQBOég

e Append the rule B — .

Let P’ be the resulting set of production rules. Define G’ to be the unique admissible
grammar whose set of production rules is P’.
Reduction Rule 3. Let GG be an admissible grammar. Suppose there are two distinct

production rules of form

A — Oélﬁoéz (610)
B — Oé360é4 (611)

where (3 is of length at least two, either oy or as is not the empty string, and either a3 or
a4 is not the empty string. Let €' be a symbol not appearing in V(G) U T(G). Perform

the following operations simultaneously to P(G):
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e Replace the rule (6.10) with the rule

A= aCay

e Replace the rule (6.11) with the rule

B — a3Cay

e Append the rule
C—p

Let P’ be the resulting set of production rules. Define G’ to be the unique admissible
grammar whose set of production rules is P’.
Reduction Rule 4. Let GG be an admissible grammar. Suppose there are two distinct

production rules of the form

A — Oélﬁoéz (612)
B —»

where (3 is of length at least two, and either oy or az is not the empty string. In P(G),
replace the production rule (6.12) with the production rule

A — OélBOéQ

Let P’ be the resulting set of production rules. Define G’ to be the unique admissible
grammar whose set of production rules is P’.

Reduction Rule 5. Let G = (V,T, P, S) be an admissible grammar. Suppose there
exist distinct variables A, B € V such that f&(A) = f&(B). Let P* be the set of
production rules that results by substituting A for each appearance of B in the right
members of the production rules in P. Let U be the set of those variables in V' which
are useless symbols with respect to the grammar (V, T, P*,5). (Note that U is nonempty,
because B € U.) Let P’ be the set of production rules obtained by removing from P*
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all production rules whose left member is in U. Define GG’ to be the unique admissible

grammar whose set of production rules is P’.

FExample 9. Consider the admissible grammar (¢ whose production rules are

AB
D
alk
ab
cd
bD

= O QA W oe w»
+ Ll

Notice that f&(A) = f&7(B) = abed. Replace every B on the right with A:

AA
D
alk
ab
cd
bD

M O Q W = wn
R

(6.13)

Consider the grammar G* in which V(G*) ={S, A, B,C, D, E}, T(G*) = {a,b,c,d}, and
P(G*) is the set of production rules listed in (6.13). Let us compute the members of

V(G™) which are useless symbols with respect to the grammar G*:

We have:

2.8 = S

L(S) = AA

f2.(S) = CDCD
feu(S) = abedabed, n >3
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The useless members of V(G*) are the members of V(G*) not appearing in the right hand
sides of the equations in (6.14). These are the variables B and £. Removing the two
production rules from the list (6.13) which have B and E as left members, we obtain the

set of production rules

S — AA
A —- CD
C — ab
D — «d

which uniquely defines an admissible grammar G'. The reader can verify that the gram-
mars (G and G’ both represent the data string abedabed.
Fzxample 10. Consider the data string

x =01101110011001110001110110110111

We will obtain an irreducible grammar representing x in finitely many reduction steps,
where on each reduction step, one of the Reduction Rules 2-4 is used. We start with the

list of production rules consisting of just one rule:
S —=x
Applying Reduction Rule 2, we get the list of production rules:

S — A001100111000111011A
A — 0110111

We apply Reduction Rule 2 again, getting the list of production rules

S — A0011BB11A
A — 0110111
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B — 001110

Applying Reduction Rule 3, we obtain:

ACBBI11A
0110111
C'10

0011

QW o= W
L4 1l

The following is then obtained via application of Reduction Rule 2 followed by Reduction
Rule 4:

S — ACBBI11A
A — DDI1

B — C10

¢ — 0D

D — 011

Applying Reduction Rule 3 at this point yields the list of production rules (3.8), which
is seen to define an irreducible grammar. This grammar will automatically represent the
string x.

Discussion. Notice that in the preceding example, we started with a grammar repre-
senting our data string and obtained an irreducible grammar representing the same string
via finitely many reduction steps, in which each reduction step involved exactly one of
the Reduction Rules 1-5. How can we be sure that it is always possible to do this? To

answer this question, define

O(G) 2 2|G) - [V(G))|

for any admissible grammar (. The number C'(() is a positive integer for any admissible
grammar (. Also, the reader can check that if the grammar G’ is obtained from the
grammar (G by applying one of the Reduction Rules 1-5, then C'(G") < C'(G). From these

facts, it follows that if we start with a grammar G which is not irreducible, then in at most
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C(G)—1 reduction steps (in which each reduction step involves the application of exactly
one of the Reduction Rules 1-5), we will arrive at an irreducible grammar representing
the same data string as G. It does not matter how the reductions are done—they will
always lead to an irreducible grammar in finitely many steps.

Remark. It is possible to define more reduction rules than Reduction Rules 1-5. For
example, if the right members of the production rules of a grammar G contain nonover-
lapping substrings a # o for which f&(a) = f& ('), one can reduce G by replacing
a,a’ with a new variable A, while introducing a new production rule (either A — « or
A — o). This new reduction rule is somewhat difficult to implement in practice, however.

We limited ourselves to Reduction Rules 1-5 because

e Reduction Rules 1-5 are simple to implement.

e Reduction Rules 1-5 yield grammars which are sufficiently reduced so as to yield

excellent data compression capability (Theorem 8).

Remark. Cook et al. [3] developed a hill climbing search process to infer a simple
grammar (¢ whose language L((7) contains a given set of strings 5. The grammar inferred
by their algorithm locally minimizes an objective function M(G|S) which measures the
“goodness of fit” of the grammar G to the set of strings S. It is interesting to note that
Reduction Rules 1-4 were proposed in [3] as part of the search process, along with some
other rules. However, unlike our approach in the present paper, Cook et al. do a reduction
step only if the objective function is made smaller by doing so.

Using Reduction Rules 1-5, it is possible to design a variety of irreducible grammar

transforms. We discuss two of these, the longest matching substring algorithm and the

modified SEQUITUR algorithm.

6.1 Longest Matching Substring Algorithm

For a given data string x, start with the trivial grammar consisting of the single production
rule S — x, and then look for a substring of x that is as long as possible and appears in
at least two nonoverlapping positions in x. (We call such a substring a longest matching
substring.) A first round of reductions using Reduction Rules 2-4 is then performed, in

which each nonoverlapping appearance of the longest matching substring is replaced by
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a variable, resulting in a new grammar. In subsequent rounds of reductions, one first
detects a longest matching substring (the longest A-string appearing in nonoverlapping
positions in the right members of the previously constructed grammar), and then applies
Reduction Rules 2-4 to obtain a new grammar. The rounds of reductions terminate as
soon as a grammar is found for which no longest matching substring can be found. This
grammar is irreducible and represents x. Calling this grammar Gy, we have defined a
grammar transform x — Gx. This grammar transform is the longest matching substring
algorithm. Example 10 illustrates the use of the longest matching substring algorithm. In
each list of production rules that was generated in Example 10, the right member of the
last rule listed is the longest matching substring that was used in the round of reductions

that led to that list.

6.2 Modified SEQUITUR Algorithm

Process the data string x = xyx5---x, one data sample at a time, from left to right.
Irreducible grammars are generated recursively, with the ¢-th grammar G; representing
the first ¢ data samples. Each new data sample z; is appended to the right end of the right
member of the S production rule of the previous grammar (;_;, and then reductions take
place to generate the next grammar (&; before the next sample x4 is processed. Since only
one sample is appended at each stage of recursive grammar formation, the reductions that
need to be performed to recursively generate the irreducible grammars {G;} are simple.
The final grammar ), is an irreducible grammar which represents the entire data string
x. Calling this final grammar Gy, we have defined a grammar transform x — Gx. We
call this transform the modified SEQUITUR algorithm because of its resemblance to the
SEQUITUR algorithm studied in the papers [18] [19].

Remark. The SEQUITUR algorithm [18] [19] can generate a grammar Gy represent-
ing a data string x which is not a member of the set of grammars G*(A), and therefore we
cannot apply Theorem 8 to the SEQUITUR algorithm. It is an open problem whether the
SEQUITUR algorithm leads to a universal source code. On the other hand, the modified
SEQUITUR algorithm does lead to a universal source code.
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7 Conclusions

We conclude the paper by embedding our grammar based coding approach into a general
framework which lends perspective to the approach and allows one to more easily relate
the approach to other source coding approaches.

Our general framework employs Turing machines. We adopt the usual definition of
Turing machine (see [16], pp. 26-27), considering all Turing machines whose output al-
phabet is the set A. Each Turing machine possesses a doubly-infinite tape consisting of

cells

Oy, O, C, Oy, Oy

which are linked together from left to right in the indicated order; each cell C; can store
a symbol from A or else its content is blank. There is also a read/write head which can
be positioned over any of the cells on the machine tape. A Turing machine executes a
computation by going through finitely or infinitely many computational cycles, possibly
changing its machine state during each cycle. A computational cycle of a Turing machine

consists of an operation of one of the following two types:

(i) Read/write head is moved one cell to the left or right of its current position, and the

machine moves to a new state or stays in the same state.

(i1) Read/write head stays in its current position, and either a symbol from A or a blank
is written into the cell below, replacing the previous cell content, or the machine

state is changed (or both).

In our use of Turing machines, we differ from the standard approach in that we do not
program our Turing machines. (A Turing machine is programmed by placing finitely
many inputs in the cells of the machine tape before the machine goes through its first
computational cycle—the inputs can be varied to induce the machine to produce differ-
ent computations.) We always assume that in performing a computation using a given
Turing machine, the initial configuration of the machine’s input tape is “all cells blank”
(in other words, the input to the machine is the empty string). By initializing the ma-
chine’s tape cells to be blank, the machine is set up to do one and only one computation.

(Nothing is lost by doing this—if a string is computed using a Turing machine whose
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initial tape configuration has finitely many nonblank cells, it is not hard to constuct an-
other Turing machine which starts with blank cells and emulates the computations done
on the first machine after finitely many computational cycles.) When a Turing machine
does a computation, either the computation goes on forever or the machine halts after
finitely many computational cycles. We say that a Turing machine computes an A-string
1Ty ...z, if the machine halts with consecutive tape cells Cy, Cs, ..., C, having contents
T1,T9,...,T,, respectively, and with every other tape cell having blank content. The
reader now sees that in our formulation, given a Turing machine 7', either (i) there exists
exactly one A-string x such that T computes x, or else the machine T' computes no string
in AT (meaning that the machine did not halt, or else halted with cell contents not of the
proper form described previously).

General Framework. Let 7 = (T1,Ts,...) be any sequence of Turing machines such

that the following property holds:
Vx € At, T, computes x for at least one ¢ (7.15)

Let By, By, Bs, ... be the lexicographical ordering of all binary strings in {0,1}*. (This
is the sequence 0,1,00,01,10,11,000,001, etc.) Define

C(x]|7) 2 min{|B;| : T; computes x}, x € A"

Also, define a lossless alphabet A source code to be a 7 based code if for each A-string
X, the codeword into which x is encoded is a B; € {By, B,, ...} such that T; computes x.

The following coding theorem is an easy consequence of these definitions.

Theorem 9 Let 7 = (1,15, ...) satisfy (7.15). Then

(a) for any 7 based code ¢,
Cx|r) < leg(x)], x € AT

(b) there exists a T based code ¢ such that

O(x|r) = les(x)], x € AT (7.16)
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Discussion. Let us call a 7 based code satisfying (7.16) an optimal 7 based code.
Let us call the function x — C(x|7) from AT to {1,2,3,...} the 7 complexity function.
Theorem 9 tells us that there is an optimal 7 based code, and that its codeword length
performance is governed by the 7 complexity function.

By changing 7, we get different families of 7 based codes, as the following two examples
indicate.

Fxample 11. Let 7 = (T1,Tz,...) be an effective enumeration of all Turing machines,
as described in ([16], Section 1.4.1). The 7 complexity function is then the Kolmogorov
complexity function ([16], pp. 90-91). The family of 7 based codes is very wide. To see
this, let Cr..(A) be the family of all alphabet A lossless source codes whose encoder is a
one-to-one total recursive function on A% and whose decoder is a partial recursive function
on {0,1}*. Let ¢ be a code in C,..(A). Using the Invariance Theorem of Kolmogorov
complexity theory ([16], Section 2.1), one can show that there is a positive constant C

and a 7 based code ¢’ in C,..(A) such that
6¢/(X) S 6¢(X) ‘|‘ C, X & ./4+

On the other hand, any optimal 7 based code is not a member of C,..(A), because, if it
were, there would be a computable version of the Kolmogorov complexity function, and
this is known not to be true (the paper [12] gives a rather strong refutation).
Example 12. Let
G'GEGPLGE L

be the ordering of the grammars in G(.A) such that the corresponding codewords
B(GY), B(G), B(G®), B(GY), ..

are in lexicographical order. For each G € G(A), define the new codeword B(G)* in
which B(G)* = B; for that ¢ for which G = G. Since |B(G)*| < |B(G)| for every G,
we lose nothing by redefining the concept of grammar based code to use the codewords
{B(G)*: G € G(A)} instead of the codewords {B(G) : G € G(A)}. Accordingly, let us

now define a code ¢ to be a grammar based code if there exists a grammar transform
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x — (i for which
cp(x) = B(Gx)", xe€ AT

For each grammar GG in G(A), one can construct a Turing machine T'(G) with control
function based on the production rules of GG, which computes the data string represented
by G. Let 7 = (T(G"), T(G?),...). The family of 7 based codes is the family of grammar
based codes. Therefore, an optimal 7 based code is an optimal grammar based code. It
can be seen that there is an optimal grammar based code belonging to the family of codes
Crec(A) introduced in Example 11. The complexity function x — C'(x|7), which describes
the codeword length performance of optimal grammar based codes, is computable, unlike
the Kolmogorov complexity function (although we conjecture that there is no polyno-
mial time algorithm which computes an optimal grammar based code or this complexity
function). Future research could focus on obtaining bounds on the complexity function
x — C(x|7) so that we could have a better idea how optimal grammar based codes
perform.

We conclude the paper by remarking that the Chomsky hierarchy of grammars ([10],
Chapter 9) can be mined to provide other instances in which it might be useful to look at a
family of 7 based codes for a sequence of machines 7 associated with a set of grammars. To
illustrate, the set of context-sensitive grammars belongs to the Chomsky hierarchy. Each
data string could be represented using a context-sensitive grammar, and then a machine
could be constructed which computes the data string, using the production rules of the
grammar as part of the machine’s logic. Letting 7 be an enumeration of these machines,
the corresponding family of 7 based codes (which is strictly larger than the family of
grammar based codes of this paper), might contain codes of practical significance that

are waiting to be discovered.
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8 Appendix A

In this Appendix, we prove Theorem 2 by means of a sequence of lemmas.

Lemma 3 Let GG be a deterministic context-free grammar such that the empty string is
not the right member of any production rule of G. Suppose that the derivation graph of
G is acyclic. Let u be a string in (V(G)UT(G))T which is not a string in T(G)T. Then
there exists a variable A € V() such that both of the following hold:

o A is an entry of u.
o A is not an entry of any of the strings fi(u), i =1,2,....

Proof. We suppose that the conclusion of the lemma is false, and prove that there
must exist a cycle in the derivation graph. Let S be the set of all variables in V(') which
are entries of u. By assumption, S is not empty. For each A € S, let S(A) be the set

S(A)={B € V(@) : B is an entry of some f&(A), 1 > 1}

Notice that each variable in V() appearing in at least one of the strings f&(u), 7 > 1,
must lie in the union of the sets S(A). Since the conclusion of the lemma was assumed
to be false, for each A € S, there exists B € § such that A € S(B). Pick an infinite
sequence Al, A%, A% ... from & such that

At e S(ATY i >1 (8.17)
Since the set S is finite, there must exist A € & and positive integers 71 < 25 such that
A= A2 = A (8.18)

Observe that if B € S(A), then there is a path in the derivation graph which starts at
the A vertex and ends at the B vertex. Applying this observation to the statements in
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(8.17) for which iy < i < i3 — 1, we see that there is a path in the derivation graph such
that the vertices visited by the path, in order, are

Az AT AUt AR
Relation (8.18) tells us that this path begins and ends at A and is therefore a cycle.

Lemma 4 Let GG be a deterministic context-free grammar for which the empty string is
not the right member of any production rule of G, and for which the derivation graph is

acyclic. Then
E Ny e T(G)*, Yue (V(G) UT(G)*

Proof. Fix v € (V(G)UT(G))*. We assume that
& M) g T(GY (8.19)

and show that this leads to a contradiction. The assumption (8.19) leads us to conclude
that each string fi(u), ¢ = 0,1,...,|V(G)|, must have at least one entry which is a
member of V(). Applying the previous lemma, there exists a sequence A%, A, ... AV(S)
of variables from V() such that the following hold:

(i) A'is an entry of fi(u), i =0,1,...,|V(G).

(ii) For each i = 0,1,...,|V(G)]|, the variable A’ is not an entry of any of the strings
S, 5> i.

There are more terms in the sequence A% A', ... AV than there are members of V(G).

Therefore, we may find a variable A and integers i; < iy from the set {0,1,...,|V(G)|}

such that A" = A2 = A. Because of statements (i) and (ii) above, we see that A, and

therefore A, is an entry of f&(u) but not an entry of f2(u). From statement (i) above,

we see that A%, and therefore A, is an entry of féf (u). We have arrived at the desired

contradiction.

Lemma 5 Let GG be a deterministic context-free grammar for which the empty string is

not the right member of any production rule of G, and for which the derivation graph is
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acyclic and rooted at the S vertex. Then each symbol in V(G) U T(G) is an entry of at
least one of the strings fL(S), i =0,1,...,|V(G)|.

Proof. Y € V(GY)UT(G) and A € V((), and there is a path in the derivation graph
consisting of ¢ edges which starts at the A vertex and ends at the Y vertex, then it is easy
to see that Y is an entry of f5(A). Fix Y € V(G)UT(G), Y # S. The proof is complete
once we show that Y is an entry of fi(S) for some positive integer ¢ < |V(G)|. Since
the derivation graph is rooted at S, there is a path {ej,ea,...,¢;} which starts at the S
vertex and ends at the Y vertex. For each j = 1,...,7, let A7 € V(&) be the variable
such that the edge e; starts at the A7 vertex of the derivation graph. Since the derivation
graph is acyclic, the terms in the sequence A', A%,... A" are distinct members of V().
Therefore, it must be that ¢ < |[V(G)|. By our observation at the beginning of the proof,
we also have that Y is an entry of f5(5). The proof is complete.

Lemma 6 Let G be an admissible context-free grammar. Then the derivation graph of G

s rooted at the S vertez.

Proof. The proof is by induction. Let Y # 5 be a symbol in V(G) U T(G). We must
show that there is a path in the derivation graph of &G which starts at the S vertex of the
graph and terminates at the Y vertex of the graph. Since Y is not a useless symbol, we

can find a sequence of strings aq, aq, ..., a; such that

® o is the right member of the production rule whose left member is 5.
o Ifk>1,then oy Saiq, i=1,...,k—1.
e Y is an entry of ay.

Suppose k = 1. In the derivation tree, there is a path consisting of one edge which starts
at the S vertex and terminates at the Y vertex. Suppose k > 1. We may take as our
induction hypothesis the property that for every symbol in «j_1, there is a path in the
derivation graph leading from the S vertex to the vertex labelled by that symbol. Pick an
entry A € V() from oy such that oy arises when the right member of the A production
rule is substituted for A in a;_;. To a path leading from the S vertex to the A vertex, we
may then append an edge leading from the A vertex to the Y vertex, thereby obtaining
a path leading from the S vertex to the Y vertex.
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Lemma 7 Let G be an admissible context-free grammar. Then the derivation graph of G

is acyclic.

Proof. Since L(() is not empty, for some 7 > 1, the string f&(S) is a member of L(G)
and therefore a member of T'(G)*, which implies that the following property holds:

Property: All but finitely many terms of the sequence {f&(S) : 7 > 1} coincide with a
string in T'(G)™.

Suppose A, B are variables in V() and there is a path in the derivation graph leading
from the A vertex to the B vertex. Since A is not a useless symbol, A is an entry of f5(.5)
for some 1. Using the path from the A vertex to the B vertex, one then sees that B is an
entry of fg;(S) for some 5 > 1. This implies that if there were a cycle in the derivation
graph, some A € V() (the variable labelling the vertex at the beginning and the end of
the cycle) would be an entry of f&(S) for infinitely many . This being a contradiction of
the Property, the derivation graph must be acyclic.

Proof of Theorem 2. Statement (i) of Theorem 2 implies Statement (ii) of Theorem 2
by Lemmas 6 and 7. Statement (ii) of Theorem 2 implies Statement (iii) of Theorem 2
by Lemmas 4 and 5. It is evident that Statement (iii) implies Statement (i).

9 Appendix B

In this Appendix, we prove Lemmas 1 and 2. We adopt a notation that will be helpful in
these proofs: If u and v are strings in the same multiplicative monoid S&*, we shall write
u ~ v to denote that v can be obtained by permuting the entries of the string uw. (In the
language of [6], u ~ v means that v and v belong to the same type class.) We first need

to establish the following lemma that is an aid in proving Lemmas 1 and 2.

Lemma 8 Given any grammar G € G*(A), there exists a parsing m of the A-string

represented by G satisfying
H(G) < H*(m) + |d] (9.20)
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Furthermore, m is related to wg in the following way: There is a string o = o105+ 04 in

V(G)UT(G) such that o ~ wg and

m = (/g (1), & (02), -, [& (o) (9.21)

Proof. Fix G € G*(A). Let x be the A-string represented by Gi. Find any string o for
which there are strings o;, 0 <1 < |V(G)] — 1, satisfying

(1) ao = fa(Ao) and oy (g)-1 = 0.

(ii) Foreach 1 <i < |V(G)|—1, the string «; is obtained from the string «;_1 by replacing
exactly one appearance of A; in a;—1 with fg(A;). (By this, we mean that there
exist strings v1,7v2 such that (y1, A;,¥2) is a parsing of a1 and (71, fa(A;),72) is a

parsing of «;.)

Letting ¢t be the length of the string o, write 0 = 0103 - - 04, where oq,...,00 € V(G) U
T(G). Let m be the sequence of substrings of x defined by (9.21). Studying the construc-
tion in (i)-(ii), it can be seen that o ~ wg. We complete the proof by showing that m
is a parsing of x satisfying (9.20). From the equation (9.21) and the fact that f& is an
endomorphism, 7 is a parsing of f&7(o). Therefore, 7 will be a parsing of x provided we

can show that
J&'(Ao) = [ (o) (9.22)
From statement (ii) above, for each 1 <i < |V(G)| -1,

& (i) = f&M)IE(ANE ()
fe(a) = f&m)IE(fa(A)fE (1)

From conclusion (iv) of Theorem 5, the two middle factors in the right members of the
preceding equations are equal, from which we conclude that the left members are equal,
and then (9.22) must hold. Using again the fact that o ~ wg, the unnormalized entropies

of these two strings must coincide, whence

H(G) = I"(we) = (o),
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and (9.20) will be true provided we can show that
H*(o) < H*(m) + |G| (9.23)

Let ¢V be the string obtained from o by striking out all entries of o which belong to
T(G). Let 0 be the string obtained from ¢ by striking out all entries of o which belong
to V(G). For i = 1,2, let 70 be the subsequence of m obtained by applying f& to
the entries of ¢@. If o) is the empty string or if o(? is the empty string, then the
mapping f& provides a one-to-one correspondence between the entries of o and 7, forcing
H*(0) = H*(m) and the conclusion that (9.23) is true. So, we may assume that neither

of the sequences o), 5(?) is the empty string. Properties of unnormalized entropy give us

H*(o) < H(eW)+ H (a?) 40|
H*(m) > H*(w(l))—l-H*(w(z)) (9.24)
We also have
H*(a(l)) — H*(ﬂ'(l))
m () = o (z@) (9.25)

Combining (9.24) with (9.25), and using the fact that |o| < |G|, we obtain (9.23), com-
pleting the proof of Lemma 8.

9.1 Proof of Lemma 1

Fix a positive integer k. Choose an arbitrary A-string x, an arbitrary grammar G € G*(A)
which represents x, and an arbitrary alphabet A k-th order finite state source p. We
wish to establish the inequality (5.7). Let n be the length of x, and we write out x
as X = wxixy---x,, where each x; € A. Appealing to the definition of the family of
information sources A?S(A), we select a set § of cardinality k, sy € S, and nonnegative

real numbers {p(s, z|s') : 5,8 € Sg, x € A} such that (5.3)-(5.4) hold. We introduce the
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function 7 : A* — [0,1] in which

A m
r(y) = max Y [Ip(si,yilsica)
Soesk S
81,5240-,8m €S 1=1
for every A-string y = y1y2 -+ ¥m. We note for later use that for every A-string y and

every parsing (v, va,...,v;) of y, the following relation holds:

(y) < 7(v1)7(v2) ... T(v;) (9.26)

There exists a probability distribution p* on A™ such that for every positive integer r and
every y € A7,
piy) = Qb () (9.27)

where it can be determined that @ is a positive constant that must satisfy Qp > 1/2.
Applying Lemma 8, let 7 = (uy, ug,...,u;) be a parsing of x with ¢t = |G| — |[V(G)| + 1
such that (9.20) holds. We have

t t
H*(m) = mqinZ—log q(ui) <> —log p*(u;) (9.28)
=1 =1
where the minimum is over all probability distributions g on A*. From (9.26)-(9.27),
t

I ()] |TT2H)] (9.29)

=1

p(x) <

Combining (9.20), (9.28), and (9.29), we have

¢
H(G) < —logu(x) 4+ t(1 + log k) + |G| + 2> log |u;| (9.30)

=1

We can appeal to the concavity of the logarithm function to obtain

) p—" 031

t
> log |ui| <t 'log "

=1
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Combining (9.30)-(9.31), along with the fact that ¢ = |G| — |V(G)| + 1, we see that (5.7)
holds.

9.2 Proof of Lemma 2

The following lemma, used in the proof of Lemma 2, is easily proved by mathematical

induction.

Lemma 9 Let o be a real number satisfying o > 4/3. The following statement holds for

every integer r > 2:

Z n(n—1)a™ > (r —3) Z(n - 1)a" (9.32)

n=2 n=2

We begin our proof of Lemma 2 by fixing an A-string x of length at least |A|?**. Let ¢
be any irreducible grammar which represents x. We have V(G) = {Ao, Ay, ..., Ay )-1},
where A is the start symbol of . For each 0 <7 < |V(G)| — 1, we can express

fo(Ai) = ajas - af

nq

where each ozé € AUV(G). Foreach i =0,1,...,|V(G)] — 1, let

fa(Ai), [fa(A)
JEG(AZ') A 'ozé'ozé...'oz;i, |fa(A;)] > 1 and 0dd,|f§°(0zi)| < |f§°(a;l)
ajay ol |fa(A;)| > 1 and odd, |f§°(a;l)| < |fE(ad)]

empty string, |fa(A;)

Define the three strings

x £ f&(ps)
s(x) 2 fo(Ao)fo(A) - falApe)-1)
% = fE(s(x))
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The strings s(x) and X are not the empty string because |fg(A4;)| > 1 for at least one 1.

Define m(x) to be the positive integer

We derive the following relationships which shall be useful to us in the proof of Lemma 2:

x| < Ik <2l (9.33)
G] < 3m(x) + | 4] (9.34)
X[ < x| <20%| + [A] (9.35)

From the fact that x ~ f&7(wg) (deducible from Lemma 8), and the fact that
pa ~ AjAy--- A|V(G)|—1WG

we deduce that
X~ [ (A1Az - Ay ay-1)x

and therefore

x| = & (A1Ar - Apey-1)] + [x] (9.36)

Since ( is irreducible, each of the variables Ay, Ay, ..., Ajy(g)-1 appears at least once in
we, and therefore we must have

/& (AsAz - Ayey-1)] < /5 (wa)l = [X] (9.37)

From (9.36) and (9.37), we conclude that (9.33) is true.
Now we prove the relation (9.34). Since G is irreducible, if | f¢(A)| = 1 for a variable
A e V(G), then fo(A) € A, whence

{A e V(G): [Ja(A)] =1} < |A] (9.38)
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Using (9.38), we obtain

Gl = > |fa(A)

AEV(G)
= > e+ X 1fe(A)]
|[fa(A)] even |76(4)] odd
A A —1
< ¥ 3W+ 3 3(7%( 2)| )+|A| (9.39)
[fc(A)| even |76 (A)] odd

Noting that

m(x) _ |:Z|fG(A)|even |fG(A)|} + |:Z|fg(A)|odd{|fG(A)| — 1}}
2

we see that (9.34) follows from (9.39).
We now turn our attention to the proof of (9.35). By construction of the string s(x)

and (9.38), there are strings ¢; and ¢, such that
(1) pc ~ s(X)q192
(i1) ¢ € A* and |¢;| < |AJ.

(iii) If ¢2 is not the empty string, there is a one-to-one correspondence between the
entries of g2 and certain entries of s(x) such that if Y is an entry of ¢ and Zy is

the corresponding entry of s(x), then |f&(Y)| < |f&(Zy)]-

If we apply the endomorphism f&° to (i), we see that

Because of (iii),
/& (a2)] < /57 (s(x))] = [X] (9.41)

Applying the relations (9.40)-(9.41) together with the fact from (ii) that |¢1| < |A|, we

conclude

x| = X[+ lal+1/6(e)l

48



< 2%|+ |4 (9.42)

from which (9.35) follows.
Having demonstrated the relations (9.33)-(9.35), we can now finish the proof of Lemma
2. Factor s(x) as

5(X) = wiwy - - Wiy (x)

where each w; € (AU V(G))?. Because (i is irreducible, the strings wy,w,, . .. , Wy(x) are
distinct. We express each w; as

1.2

where w!,w? € AUV(G). Let a € AT be arbitrary. We need to upper bound the

cardinality of the set
W, ={1 <i<m(x): f&'(w) = a}

To this end, let ¢ be the mapping from the set W, into the set {1,2,...,|a]—1} x{0,1} x
{0,1} in which ¢ € W, is mapped into

&i) = (1/& (wi)], by, ba)
where for each ¢ = 1, 2,

! 0, otherwise

Since the mapping ¢ is one-to-one, we must have
(Wal <4(la] = 1)
We conclude that
{1 <@ <m(x) 2 [f&(wi)| = n}[ < 4(n = D]A]", n =2 (9.43)
Define {7, : n > 2} and {k, : n > 2} to be the sequences of integers

A

Jn {1 <@ <m(x): [f5 (wi)| = n}
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ko, 2 A(n—1)]A"

Define {M, : r > 2} and {N, : r > 2} to be the sequences of positive integers

>

M,

Dk
n=2

Z nk,

n=2

&>

N,

Notice that
|x| > |./4|32 > |./4|5|./4|2 > 17|.,4|2 > 16|./4|2 + | A|

This fact implies, via (9.35), that
%[ = 8| A[* = N
and so we may define an integer r(x) > 2 as follows:

r(x) 2 max{r : N, < |x|}
We establish a lower bound on r(x). Notice that

%] > Ny > A7) > 2r)

from which it follows that
r(x) < log[x|

On the other hand,
%] < Ny < 4(r(x) + 1)r(x)?JA"F < 8r(x)3]A]7CIF1
and so

log |x| <3+ 3logr(x)+ (r(x) + 1)log |A| <3+ 3loglog x| + (r(x) + 1)log | A]
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from which we conclude that

< log |x| — 3loglog |X| — 4log |A| — 3

r(x)—3 Tog | ]

(9.44)

We examine the right side of (9.44) in more detail. It is a simple exercise in calculus to

show that |
logu — 3loglogu > %, u > 2%

Notice that
x| > [A]P* > AP + [A] > 2% 4 |A]

and therefore

|}~(| 2 232
Combining this fact with (9.45), we see that

s
log |%| — 3log log |X| — 4log |A| — 3 > %"" ~4log |A| -3

From the fact that
|x| > |./4|34 > 2| A|

it follows that

x> KA
4
and therefore
log [X| log [x|
T—4log|A|—3 > T—410g|A|—4
> 13log|A| —4>0

Applying (9.47) to (9.44), we conclude that

log |x| — 8log |A| — 8

>0
2log | Al

r(x)—3 >
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From the definition of r(x), we have
0 r(x)
|}N(|:Nr(x)—|—A:ann: ann + A
n=2
where A > (. From this we argue:
0 . _ T’(X) k 4 A
Zn:r(x)—l—l NJn Zn:2 n( n ]n) +

Signde <[00 () (e — )| + 5

The preceding allows us to conclude that

m(x):g;jng é(l_r(x)%)J + é(r(x)%)k +T(X§% (9.49)

Since j, < k, (see (9.43)), we may replace j, with k, in the first term on the right in
(9.49) to obtain the bounds

m(X) < Mr(x) + < = (950)

where in the preceding we also used Lemma 9. Applying to (9.50) the lower bound on
r(x) — 3 that was established in (9.48), we obtain

m(x) - 2log | A|

9.51
|x| ~ log |x|— 8log |A| — 8 (9:51)

From the relationships (9.33)-(9.35), one can see that
|G| — | A| < m(x) < m(AX) < mgx) (9.52)

Gx[  — 2[x|

X

]

Combining (9.51) and (9.52), we obtain (5.8), the desired conclusion of Lemma 2.
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Figure 1: Encoder Structure of Grammar Based Code
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